DOI: https://doi.org/10.17353/2070-5379/29_2020

УДК 550.42:553.98+556.314

Сейтхазиев Е.Ш., Сарсенбеков Н.Д.

Атырауский филиал ТОО «КМГ Инжиниринг», Атырау, Республика Казахстан, Seitkhaziyev.Y@llpcmg.kz, Sarsenbekov.n@llpcmg.kz

ИНТЕРПРЕТАЦИЯ РЕЗУЛЬТАТОВ ГЕОХИМИЧЕСКИХ ИССЛЕДОВАНИЙ НЕФТИ И ВОДЫ НА ПРИМЕРЕ ОДНОГО МЕСТОРОЖДЕНИЯ (РЕСПУБЛИКА КАЗАХСТАН)

На 46 образцах нефти, отобранных с устьев разных скважин одного месторождения, выполнен фингерпринтинг нефти методом газохроматографического анализа для оценки флюидосообщаемости резервуара в пределах месторождения, расположенного в восточной прибортовой части Прикаспийской впадины. По результатам кластерных анализов установлено, что геохимические свойства исследуемых проб из скважин северо-восточной части месторождения, отличаются от соответствующих свойств нефти из скважин югозападной части. Так как залежи месторождения имеют массивный характер, все скважины эксплуатируются с минимальными значениями обводненности, кроме добывающей скважины. В связи с этим, на хроматографе и методом титрования проведены анализы ионного состава отделенной от нефти воды добывающей и двух соседних нагнетательных скважин и блочной кустовой насосной станции для определения ионного состава и выявления различий и сходства вод на молекулярном уровне. По результатам анализов сделан вывод, что все исследованные пробы воды имеют генетическое единство.

Ключевые слова: фингерпринтинг нефти, фингерпринтинг пластовой воды, массивная залежь, флюидосообщаемость резервуара, Прикаспийская впадина, Республика Казахстан.

Введение

Углеводороды (УВ) в залежи по законам физики в термобарических условиях пласта не находятся в статическом состоянии. Учитывая данный факт и проводя хроматографические исследования на молекулярном уровне, с легкостью можно идентифицировать УВ единого гидродинамического резервуара. Идентификация УВ классифицируется как фингерпринтинг нефти, то есть выявление и использование «отпечатков», что на сегодняшний день может решить множество актуальных задач в области нефтедобычи и разведки. Группируя отпечатки нефти, можно легко выделять подсчетные объекты и корректно строить геологические и гидродинамические модели залежи, используя лишь устьевые пробы нефти из скважин. Данный подход также можно применять при бурении разведочных и эксплуатационных скважин при вскрытии многопластовых залежей, экстрагировав нефть от шлама, так как для данного анализа потребуется небольшое количество УВ. В настоящее время, по мнению авторов, данный вид анализа является самым достоверным и наиболее доступным методом исследования, который также уникален по своей низкой стоимости благодаря применению современных автоматизированных технологий (автоподача проб).

Представленный подход широко применяется в западных странах, а с 2015 г. появилась

возможность использования данного метода на месторождениях Республики Казахстан, с открытием новой геохимической лаборатории на базе института национальной компании AO «НК «КазМунайГаз». Метод фингерпринтинга на газовом хроматографе «LTM-MD-GC» разработан экспертами компании «Shell» [Herwig et al., 1999; Scott, Allen, Paul, 2001; Herwig, Hempton, 2005] для анализа нефти месторождений разных стран, в том числе Канады, США, Кувейта, Нигерии, Норвегии, Великобритании и др.

Для фингерпринтинга воды используются химический состав воды и известные классификации, исходя из определенных характерных соотношений между ионами или группами ионов. Графические методы изображения состава вод широко применяются для наглядного сравнения и корреляции, чтобы определить гидродинамические связи между добывающими и нагнетательными скважинами.

Ниже рассмотрены результаты и методика интерпретации данных как для нефти, так и для воды. Для примера представлены результаты анализов и информация по залежи одного из месторождений АО «НК «КазМугайГаз» (Республика Казахстан).

Методика и объекты исследования

Газожидкостная хроматография с высоким разрешением («High Resolution gas chromatography» (HRGC)) позволяет оценить качество образца и его пригодность для дальнейшего анализа. В верхней части рис. 1 расположена типичная хроматограмма одной представительной пробы из скв. К-006, где присутствуют все УВ-компоненты и, как видно, их наибольшая концентрация приходится на пики нормальных алканов C10-C12, а концентрация более тяжелых компонентов снижается вправо, что характерно для нефтей, образовавшихся из органического вещества морского происхождения. Аналогичное распределение н-алканов и изопреноидов прослеживается по всем исследованным пробам и считается кондиционным, так как для метода фингерпринтинга нефти при многомерной газовой хроматографии с низкой термальной массой («Low Thermal Mass Gas Chromatography» (LTM-MD-GC)) используются 12 ароматических пиков компонентов между C8-C10 н-алканов (см. рис. 1), которые в пластовых условиях наиболее чувствительны к изменению.

Следует отметить, что данные компоненты в залежах, имеющих небольшую глубину залегания с низкой температурой пласта (ниже 50°С), в большой степени подвергаются биодеградации, то есть по таким пробам определение отпечатков нефти невозможно.

Время удерживания каждого компонента в виде пика на хроматограмме зависит от молекулярной массы (MW) и температуры кипения (BT) каждого компонента. Чем меньше молекулярная масса и ниже температура кипения, тем быстрее выделяются компоненты из нефти.

Рис. 1. HRGC и LTM-MD-GC хроматограммы ароматических компонентов, применяемые для фингерпринтинга на примере пробы из скв. К-006

Например, этилбензол (MW-106,17 г/моль, BP-136C) выходит раньше, чем 4-этил толуол (MW-120,19 г/моль, BP-162C) и 1, 3, 5-триметилбензол (MW-240,4 г/моль, BP-164,7C). Структуры, молекулярная масса и формулы ароматических компонентов представлены на рис. 2.

Рис. 2. Молекулярные структуры и формулы ароматических компонентов, используемые для фингерпринтинга нефти

Фингерпринтинг воды основывается на анализе ионного состава попутнодобываемых и закачиваемых вод. Для точности определения ионного состава предпочтение отдается результатам анализа на ионном хроматографе, чем широко используемому методу титрования. Принцип действия ионного хроматографа основан на ионообменном разделении с последующим подавлением фона элюента и кондуктометрическим детектированием. Параметр удерживания времени на ионном хроматографе зависит от заряда, размера и поляризуемости иона. Чем выше радиус (атомная масса), заряд или поляризуемость анализируемого иона, тем больше время удерживания (рис. 3).

Например, калий обнаруживается после натрия, так как атом калия тяжелее, чем атом натрия. По такому же принципу кальций (Ar=40,08) обнаруживается после магния (Ar=24,30). Что касается заряда ионов, то двухвалентные Ca^{2+} и Mg²⁺ выходят после одновалентных катионов Na⁺ и K⁺. Дальнейшая работа включает в себя числовую интеграцию данных, а также сравнение этих данных в программном обеспечении «Magic Net».

Нефтегазоносность рассматриваемого нефтегазоконденсатного месторождения установлена в карбонатных отложениях нижнего и среднего карбона (КТ-II). Месторождение расположено в восточной прибортовой части Прикаспийской впадины (рис. 4). В разрезе карбонатной толщи выделены две продуктивные пачки: КТ-II-1 и КТ-II-2, разделенные плотными породами толщиной до 50 м. Пачка КТ-II-1 содержит нефтегазоконденсатную залежь, а КТ-II-2 – нефтяную. Толщина пачки КТ-II-1, вскрытой всеми скважинами, в среднем составляет 119,9 м. Пачка КТ-II-2 отделяется от вышезалегающей пачки непроницаемыми породами толщиной от 14 до 54 м. Толщина пачки - в среднем 293 м, наибольшие толщины прослеживаются в северной сводовой части и достигают 462 м (В.Г. Чагай с соавторами, АО «НИПИнефтегаз», г. Актау, 2017 г.).

Породы-коллекторы продуктивной толщи КТ-II представлены, в основном, органогенными известняками, пустотное пространство которых составляют, преимущественно, межзерновые пустоты выщелачивания. Это позволило определить их как коллекторы порового типа строения.

Вместе с тем, на данном месторождении наличие большого числа тектонических нарушений благоприятствовало развитию трещиноватости пород. Тектонические нарушения трассируются по всему докунгурскому разрезу и делят структуру на несколько блоков. Выявленные субмеридианальные нарушения, в основном, надвигово-взбросового характера, субширотные нарушения – сдвигового характера. Субмеридианальные нарушения F₁, F₂, F₃ прослеживаются через всю площадь и делят ее на три больших блока: западный (I), центральный (II) и восточный (III), основными из которых являются первые два, имеющие размеры 18,3 х 1,4 км и 22,4 х 5,0 км с амплитудами 580 м и 560 м соответственно. Блок II делится на северную (подблок II-2) и южную (подблок II-1) части субширотным разломом f₅ (H.K. Уткилбаев с соавторами, Атырауский филиал «КМГ Инжиниринг», г. Атырау, 2019 г.).

Несмотря на большой объем выполненных геолого-геофизических работ с целью изучения геологического строения и, в частности, сейсморазведочных работ 3Д, геологическое строение месторождения требует уточнения, на что также указывают результаты геохимических исследований фингерпринтинга нефти.

1 – пробуренная скважина; 2 – альтитуда стола ротора; 3 – забой; границы: 4 – стратиграфических подразделений, 5 – стратиграфических несогласий, 6 – продуктивных горизонтов; 7 – тектонические нарушения; 8 – нефтенасыщенный коллектор; 9 – газонасыщенный коллектор.

Даже проведенная в данном случае процедура специальной обработки сейсмических данных не смогла обеспечить полное восстановление прослеживаемости горизонтов под соляными куполами (см. рис. 4, 5). По этой причине выделение в данных зонах даже крупных тектонических нарушений носит неоднозначный характер и местами основано только на данных бурения (Н.К. Уткилбаев с соавторами, Атырауский филиал «КМГ Инжиниринг», г. Атырау, 2019 г.).

Рис. 5. Схемы отражения основных тектонических нарушений и зон соляного диапиризма на срезе куба когерентности вдоль пачки КТ-II-1 (Н.К. Уткилбаев с соавторами, Атырауский филиал «КМГ Инжиниринг», г. Атырау, 2019 г.).

Соответственно, геологическая и гидродинамическая модели залежи, построенные на некорректных исходных данных, будут отрицательно влиять на прогнозные показатели разработки, в том числе на правильную оценку рисков себестоимости проекта.

В 2016 г. по 8 глубинным и поверхностным пробам выполнен геохимический анализ для изучения нефтематеринской породы и резервуарной геохимии нефти (Е.Ш. Сейтхазиев, Г.Г. Байбурина, ТОО «КМГ Инжиниринг», «Каспиймунайгаз», г. Атырау, 2016 г.).

По данным фингерпринтинга нефти выделены две группы нефти, которые ставят под сомнение геолого-стратиграфическую модель залежи. Анализ резервуарной химии, основной задачей которого являлась оценка характера плотной породы, разделяющей продуктивную толщу КТ-II, выявил два вида отпечатков нефти, отличающихся по площади, а не по разрезу, как предполагалось (рис. 6). Примечательно, что нефти блока II, по которому установлен подсчетный объект с единым водонефтяным контактом, имели разные отпечатки, что характеризовало их разобщенность (Е.Ш. Сейтхазиев, Г.Г. Байбурина, ТОО «КМГ

Инжиниринг» «Каспиймунайгаз», г. Атырау, 2016 г.). Нефть южной части месторождения отличалась от северной части, однако из-за малого охвата анализами проб нефти, определить точную границу раздела по площади оказалось затруднительно, поэтому в 2017 г. проведены исследования резервуарной геохимии нефти с охватом всего фонда добывающих скважин.

Рис. 6. Схема расположения скважин с указанием отбора проб (Е.Ш. Сейтхазиев, Г.Г. Байбурина, ТОО «КМГ Инжиниринг», «Каспиймунайгаз», г. Атырау, 2017 г.). Цветом обозначены две группы нефти.

В 2017 г. по всем добывающим скважинам отобраны поверхностные пробы нефти для более детального анализа резервуарной геохимии нефти. Основной задачей являлось место уточнения раздела – точной границы между двумя ранее выделенными отпечатками нефти. Результаты проведенных работ 2017 г. подтвердили наличие гидродинамической связи между блоками, а также наличие двух типов нефти, мигрировавших с обеих сторон залежи (Е.Ш. Сейтхазиев, Г.Г. Байбурина, ТОО «КМГ Инжиниринг», «Каспиймунайгаз», г. Атырау, 2017 г.).

Кроме того, из-за снижения пластового давления на месторождении необходимо организовать систему поддержание пластового давления (ППД) закачкой воды, отбираемой из водозаборных скважин (вода альб-сеноманских отложений), так как на месторождении активности краевой воды не наблюдалось. Несмотря на продолжительный период проведения ППД (с 2007 г.) и достижение накопленной компенсации более 30%, практически все скважины эксплуатируются с безводной нефтью. Из-за массивного характера залежи (около 400 м) все скважины работают с минимальными значениями обводненности (<0,3%), за исключением трех скважин, одной из которых является скв. К-026 (<40%). Для сопоставления ионного состава с водой, используемой для ППД, отобраны пробы воды из добывающей скв. К-026.

Применение новых методов и подходов к анализу и интерпретации определило полную гидродинамическую характеристику залежи, имеющую массивный характер и блочное строение. Использование фингерпринтинга нефти для изучения прерывистости коллекторов по данным отпечатков нефти является новым подходом к решению данного вопроса. Результаты таких исследований могут позволить отказаться от необходимости проведения некоторых дорогостоящих видов исследований по изучению геологического строения залежи. Целью исследования состава воды является сравнение ионного состава вод нагнетательных и добывающих скважин при помощи разных классификаций и диаграмм. Новизна данной работы заключается в том, что такие подходы редко используются комплексно в практике отечественных научных институтов нефтегазовой отрасли.

Экспериментальная часть и полученные результаты Отбор проб и подготовка образцов нефти и воды

Пробы нефти специально отбирались в стеклянную тару на устьях добывающих скважин. Для разделения небольшого содержания воды в продукции применялся метод центрифугирования (рис. 7).

Рис. 7. Процесс разделения нефти от воды методом центрифугирования

Газохроматографический анализ на LTM-GC

Для «фингерпринтинга» нефти использовался многомерный газовый хроматограф «Agilent 7890В» с двумя пламенно-ионизационными детекторами (FID) с низкой термальной массой (LTM-MD-GC), в целях определения ароматических компонентов (рис. 8).

Рис. 8. Фото газового хроматографа с двумя пламенно-ионизационными детекторами (LTM-MD-GC)

Для количественного и качественного анализов нефти, перед их началом в пробы нефти добавлялись 5-метил, 3-гептанон в качестве внутреннего стандарта («Internal standard»).

Интеграция пиков на хроматограммах осуществлялась следующим образом: а) каждый компонент выходит с определённым временем удерживания; б) внутренний стандарт (IS) - между о-кселолом и пропил-бензолом. Полученные результаты представлены в табл. 1. Пики интегрированы на специальном программном обеспечении «Open lab» и далее обрабатывались в «Microsoft Excel». Следует отметить, что анализ всех проб на LTM-MD-GC продублирован для достоверности исследований. По результатам данного анализа система на протяжении всего исследования показала высокую точность сходимости и воспроизводимости, погрешность метода составляет менее 1%.

Анализ воды на ионном хроматографе. Определение ионного состава (кроме гидрокарбонатов) проводилось на ионном хроматографе (рис. 9), согласно D4327-03 и ASTM D 6919-09. Для проведения анализа на ионном хроматографе подготовлены пробы воды, которые подвергались отстаиванию и фильтрованию супернатанта. Из водных проб определялись:

- суммарное содержание катионов первой группы: натрий, калий; второй группы: кальций, магний. В качестве подвижной фазы применялись дипиколиновая и азотная кислоты;

- суммарное содержание анионов первой группы: хлорид-ионы; второй группы: сульфатионы. Подвижная фаза – карбонат и бикарбонат натрия.

Рис. 9. Фото ионного хроматографа «Metrohm Professional IC Vario 940»

Определение гидрокарбонатов титриметрическим методом. Определение гидрокарбонатов выполнено титриметрическим методом по ГОСТу 26449.1-85, основанным на реакции с водородными ионами в присутствии индикатора метилоранж.

Сумма всех ионов равна значению их общей минерализации. Так как их разница меньше 8-10%, результаты исследований можно считать правильными. Оценка правильности водного анализа по катионно-анионному балансу также подтвердила их достоверность (меньше 5%).

Результаты исследования физико-химических свойств и состава воды представлены в табл. 2. По миллиграмм-эквивалентным значениям (meq/L) определены тип воды и генетическая связь образцов по классификациям Сулина, Пальмера, Пайпера.

Полученные результаты исследований на газовом хроматографе

NoNo	Номера	Дата	E DENZ	DVVI	M VVI	ID DENZ	O VVI	ND DENZ			125 TMD		124 TMD
п/п	СКВ.	отбора	E DEINZ	PAIL	MAIL	IP DEINZ	UAIL	INP DEINZ	4 E IOL	3 E IUL	155 TMD	2 E IOL	124 I MD
1.	К-006	2016	3742616	1415240	3764962	451186	2251022	807010	972289	1786599	795059	867971	2237344
2.	К-005	2016	3740004	1451669	3894753	443993	2257887	776846	934962	1728647	814192	828697	2222511
3.	К-022	2016	1961835	1062475	3236007	322019	1819850	567748	639723	1295880	872685	625631	2416320
4.	К-040	2016	3586720	1512995	4168392	446255	2444731	855785	963340	1798807	936300	879600	2628089
5.	К-042	2016	4318829	1837501	5081195	531743	2913828	936743	1123661	2107969	1098711	1015998	3059234
6.	К-045	2016	5061599	2077396	5695362	628813	3280883	1190154	1325080	2473451	1221731	1187453	3411292
7.	К-046	2016	2798249	1410163	4189873	422038	2306414	732625	819342	1634705	1014090	765722	2791065
8.	К-058	2016	2427243	1122082	3212310	331411	1897036	624173	721905	1379077	799236	687603	2270050
9.	К-086	2016	1841379	1209033	3816050	330028	1954536	552029	618760	1328592	1010080	589948	2665451
10.	K-006	2017	3404681	1271846	3404491	405598	2034240	712293	881885	1609668	710061	783764	2019333
11.	K-002	2017	1417413	786312	2392235	231871	1306879	386688	449819	912611	611084	427667	1674684
12.	K-003	2017	1548139	759559	2214205	225338	1268122	387960	456201	887658	535470	436960	1496453
13.	K-007	2017	1891508	888504	2527892	266405	1487532	466688	552873	1052847	606545	521222	1701273
14.	K-008	2017	1735695	1007469	3081463	284821	1642344	465898	547991	1109282	755695	513573	2010825
15.	K-009	2017	867691	408020	1175081	122990	689485	216195	255904	487091	281719	244213	792259
16.	K-068	2017	1542172	801190	2405330	241304	1328221	400731	457394	913892	589858	439460	1620424
17.	K-123	2017	1265288	701426	2116643	208466	1156815	328510	400581	813006	542637	381161	1482671
18.	K-016	2017	1326152	732544	2226785	220218	1223828	361747	424351	854420	576098	411674	1566666
19.	K-017	2017	1317288	765351	2351465	224315	1249124	364538	431756	884769	610284	406153	1636813
20.	K-018	2017	1334566	745951	2276206	229966	1243424	393471	446532	908968	603143	423940	1654048
21.	K-021	2017	1121399	675170	2085886	199791	1114722	321906	376892	781347	551210	360400	1499372
22.	K-026	2017	1441308	826463	2535932	249079	1381753	416060	480768	987989	673630	461825	1853660
23.	K-044	2017	1766730	769880	2114645	231076	1260514	420097	495795	923758	496759	460539	1380487
24.	K-047	2017	1919426	841835	2330097	243719	1407450	450577	545721	1013709	547647	515860	1556797
25.	K-049	2017	1917562	876887	2475460	277147	1489827	505575	614261	1154887	646944	584135	1841262
26.	K-051	2017	664101	307674	849151	92953	507380	160859	198626	369460	208256	186916	585681
27.	K-055	2017	1792458	823734	2333146	243109	1353143	424604	513429	969103	548565	480875	1542473
28.	K-056	2017	1753930	800423	2279082	241727	1343691	424876	507469	964148	541911	486037	1544499
29.	K-064	2017	1705101	814923	2377346	242443	1384393	428449	502931	972635	575238	484986	1625726
30.	K-065	2017	1693619	802828	2316317	239967	1357094	441934	498013	956456	559548	479663	1587855
31.	K-097	2017	2211959	1228135	3751887	353857	1969959	562582	653931	1335008	885863	606731	2365774
32.	K-104	2017	1688249	965588	2961064	292693	1621931	483631	558954	1139848	778254	541728	2129556
33.	K-128	2017	1838243	1024165	3136961	308893	1736524	528637	602576	1217578	816133	578103	2238427
34.	K-135	2017	1206252	702168	2147076	201354	1159742	334674	389615	793790	547582	372737	1485762
35.	K-204	2017	1214219	570744	1635449	175077	951358	296715	355211	682647	392603	338667	1091651
36.	K-202	2017	1929505	1069638	3227927	282684	1580800	423136	472405	967021	626674	408808	1571979
37.	K-004	2017	2200382	1011626	2929853	302549	1706774	528783	622479	1186794	671288	580781	1835712
38.	K-019	2017	947436	606392	1868753	172273	965308	268379	317477	662910	482144	295636	1274354
39.	K-023	2017	1046669	573921	1724164	170888	948919	280458	331203	661610	438060	316739	1205887
40.	K-073	2017	1114171	605670	1850480	184309	1031911	308535	366108	731244	485631	348378	1331260
41.	K-086	2017	929465	605166	1884950	169575	995737	275452	329818	686401	512685	313363	1377976
42.	K-098	2017	1264677	754855	2342267	219911	1238929	373054	420919	852964	597771	396399	1607777
43.	K-125	2017	1711293	966094	2947987	276833	1551372	461595	517082	1052990	704277	478969	1886655
44.	K-126	2017	1266872	739831	2277337	221640	1232568	364083	422884	865311	602603	404669	1644654
45.	K-130	2017	1175532	728810	2270286	210357	1204096	352788	399246	824343	593817	378003	1602178
46.	K-137	2017	1546691	867302	2650638	259864	1459681	444498	503004	1011077	686773	484592	1869917

Нефтегазовая геология. Теория и практика. - 2020. - Т.15. - №3. - http://www.ngtp.ru/rub/2020/29_2020.html

Таблица 2

		Поб скр			
	Har CKR K-024	К-026	Har CKR K-001	БКНС	
Номер пробы	$(\pi n n n 6 - 2017)$	К-020 (проба	$(\pi n_0 \delta_2 2010)$	(проба 2010)	
	(11000a 2017)	(11p00a)	(npood 2019)	(npoba 2019)	
		2017)			
Са ²⁺ , (мг/л)	240	320	240	200	
Mg ²⁺ , (мг/л)	116	97	134	146	
Na+ (мг/л)	384	896	324	261	
К⁺ (мг/л)	3,64	3,07	3,95	3,95	
HCO ₃ ⁻ , (мг/л)	232	290	232	98	
SO4 ^{2-,} (мг/л)	672	717	581	625	
Cl-, (мг/л)	723	1535	752	662	
Ph	7,17	7,74	7,86	6,95	
Плотность (г/см ³)	1,0009	1,0012 1,007		1,0008	
Общая					
минерализация	2367	3855	2263	1992	
(мл/л)					
Катионный-	0.100/	0.040/	0.120/	0,25%	
анионный баланс	0,18%	0,04%	0,15%		
Классификация			Cl Ma	Cl-Mg	
Сулина	CI-Mg	CI-Mg	CI-Mg		
Классификация	C1C2A2	616242	G1G2A2	S1S2A2	
Пальмера	5152A2	5152A2	SISZAZ		
Классификация	CaSO42-с вкладом	NaClaore	CaSO42-с вкладом	CaSO42-с вкладом	
Пайпера	воды NaCl	паствода	воды NaCl	воды NaCl	

Результаты количественного анализа ионного состава воды методом ионной хроматографии

Обработка и обсуждение результатов

Фингерпринтинг нефти

Как было указано выше, задачей исследования является описание эффективности комплексного подхода к интерпретации результатов и использование уже известных данных после получения однозначных выводов. Вначале исключаются такие понятия, как объекты разработки, интервалы перфорации, местоположение скважин по блокам, анализ воды из добывающих или нагнетательных скважин и т.п. Обрабатываются только цифры по индивидуальным точкам. В данном случае это скважины, из которых отбирались/закачивались нефть или вода.

Когда имеется множество больших цифр (см. табл. 1), в первую очередь необходимо провести усреднение для дальнейшего построения графиков, из которых визуально видны отличия или имеющиеся сходства. Графики можно строить на общедоступном (Microsoft Excel) или на специальном программном обеспечении.

Первое, это усреднение данных по пробам, для чего созданы несколько таблиц и выполнены определенные математические вычисления:

используя данные табл. 1, определяется сумма по каждой пробе (то есть по каждой скважине);

 каждый компонент (в данном случае их 11, так как из 12 пиков 6-ой пик «ISTD» исключается) делится на сумму, рассчитанную по данным скважины;

 полученное значение в последующем определяется как среднее значение по столбцам, то есть по каждому виду компонентов;

4) повторяется шаг 2, однако в данном случае каждый компонент делится на среднее значение компонентов, определенное на 3-ем шаге.

После проведения вышеуказанных комбинаций по полученным данным можно построить графики. Одним из доступных и наиболее информативных методов являются лепестковые графики, построенные в программном обеспечении «Microsoft Excel». При этом для графика можно использовать два вида исходных данных – это усредненные данные компоненты или их соотношения (рис. 10, 11).

Рис. 1 Звездная диаграмма фингерпринтов нефти в сырой форме

По имеющимся сходствам можно выделить их разными цветами, образую графики, для дальнейшей их идентификации по местоположению скважин. После визуального сравнения звездных диаграмм выявлено наличие двух групп нефти, что отмечается красным и зеленым цветами и наглядно иллюстрируется в виде лепестковых диаграмм (см. рис. 10, 11).

Пробы нефти скважин К-046 и К-068 с большой уверенностью можно назвать смесью двух видов нефти, а данный район скважин отметить как точку слияния двух видов нефти.

При этом также можно выделить скв. К-202 в представленной диаграмме черным цветом, для рассмотрения местоположения данной скважины. При ознакомлении с работой данной скважины, особое внимание уделяется высокому показателю газового фактора, что также подтверждается относительно высокими значениями легких фракций, таких как H XYZ, M XYZ и IB BENZ.

Рис. 11. Звездная диаграмма фингерпринтов нефти

По второму методу проведен статистический сравнительный анализ, так называемый «метод главных компонентов» («Principal component Analysis» (PCA)), с ранее использованными данными (рис. 12, 13). Суть РСА-анализа заключается в том, что чем ближе точки, тем ближе пробы по составу. Чем выше процент каждого компонента, тем выше охват данных и соответственно, тем выше достоверность РСА-анализа. В рассматриваемом случае (см. рис. 12), компоненты РС-1 и РС-2 охватывают 82,93% и 10,99% информации изменчивости (variables) по соотношениям ароматических пиков. В связи с этим, построена зависимость компонентов РС-1 и РС-2, охватывающих 93,92% изменчивости, по результатам которой также выявлены 2 группы нефти (цвета проб из скважин выделялись выше при построении лепестковых диаграмм).

Такой же подход принят и в трехмерной системе координат (см. рис. 13), и на обоих рисунках можно отметить скв. К-202, которая по компонентному составу имеет относительно другой характер данных.

Если рассмотреть дендрограмму, построенную методом Варда (см. рис. 6), так как часто именно она дает довольно компактные и хорошо разделенные кластеры, то также выделяются 2 группы нефти, на основе которых можно также дать характеристику фильтрационноемкостным свойствам. Получена «дендрограмма» образцов, объединенных общими признаками - чем ближе точки образцов друг к другу, тем более схожи они по изучаемому составу. При наложении указанных групп на структурную карту месторождения становится очевидно, что такое распределение связано именно с геологическими особенностями месторождения. Предположительно, месторождение имеет два гидродинамических блока, не связанных друг с другом, с несмешивающимися между собой нефтями (смешивание нефти можно предположить в районе скважин К-046, К-068). Статистическое распределение показало, что нефть северо-восточной части месторождения отличается от нефти югозападной части.

Рис. 2. РСА-анализ основных компонентов на ПО PIGI в двухмерной системе координат

Рис. 3. РСА-анализ основных компонентов на ПО PIGI в трехмерной системе координат

В 2017 г. по данному месторождению одним из операторов выполнена большая работа «Технико-технологические исследования карбонатных коллекторов, инженерноаналитические и консультационные услуги по вопросам разработки, геологии, техники и технологии добычи», в рамках которой пересмотрена геологическая модель залежей месторождения на основе вновь переработанных сейсмических материалов, с проведением детального исследования структуры залежи, коллекторов и детального описания трещин (Д. Ли с соавторами, филиал «СИНОПЕК», г. Пекин, 2017 г.)

Следует отметить, что по итогам работы с данными геохимических исследований нефти геологическое строение претерпело значительное изменение (рис. 14), однако для этого потребовалось затратить много ресурсов и средств программного обеспечения. Результаты анализа резервуарной геохимии в работе не использованы, так как работы проводились параллельно.

Рис. 4. Схема сопоставления структурных карт до и после обработки (Д. Ли с соавторами, филиал «СИНОПЕК», г. Пекин, 2017) 1 – скважины, 2 – взброс, 3 – изогипсы, 4 – линия выклинивания.

Тем не менее, последняя обновленная геологическая модель также требует корректировки по данным геохимических исследований. Как показывают результаты

геохимических исследований нефти, выделенные разломы требуют пересмотра и принятия определенных решений, которые должны быть отражены в гидродинамической модели залежи.

По дендрограмме Варда можно выявить развитость трещиноватого типа строения коллектора. Если посмотреть местоположение добывающих скважин, свойства нефти из которых имеют хорошую сходимость друг с другом, можно говорить о хорошей гидродинамической сообщаемости между скважинами К-003 и К-064, несмотря на их расположение в разных блоках залежи, и находящуюся между ними скв. К-068, нефть которой является смесью двух нефтей (рис. 15).

Рис. 5. Дендрограмма Варда для корреляции нефть-нефть между скважинами Усл. обозначения см. на рис. 14.

Исходя из вышеизложенного можно предположить, что применение резервуарной

геохимии нефти для изучения прерывистости коллекторов по данным отпечатков нефти является новым подходом к решению вопроса. Использование этих результатов позволить отказаться от необходимости проведения некоторых дорогостоящих видов исследований изучения геологического строения залежи.

Фингерпринтинг воды

Классификация вод по В.А. Сулину. Классификация подземных вод по В.А. Сулину основана на генетическом принципе, согласно которому химический состав вод формируется в определённых природных условиях (континентальных, морских, глубинных) и вследствие процессов взаимодействия вод с породами или вод различного генезиса между собой. При этом происходит их обогащение специфическими компонентами, соотношение которых позволяет выделить четыре типа вод (сульфатно-натриевый, гидрокарбонатно-натриевый, хлоридно-магниевый, хлоридно-кальциевый). Каждый из этих типов подразделяется по анионам на три группы (гидрокарбонатную, сульфатную и хлоридную) и по катионам на три подгруппы (кальциевую, магниевую и натриевую). Таким образом, выделяются основные типы вод по В.А. Сулину – сульфатно-натриевый, гидрокарбонатно-натриевый, хлоридно-кальциевый и хлоридно-магниевый (табл. 3).

Таблица 3

Диагностические коэффициенты тип воды (мг*Э)		Тип воды	Характерная обстановка формирования вод		
	$\frac{Na-Cl}{SO4} < 1$	сульфатно- натриевый (Na ₂ SO ₄)	Воды земной поверхности и зоны свободного водообмена (континентальная)		
$\frac{Na}{Cl} > 1$	$\frac{Na - Cl}{SO4} > 1$	гидрокарбонатно- Натриевый (NaHCO ₃)	Воды земной поверхности и зоны свободного и затрудненного водообмена (континентальная)		
<u>Na</u> <u>Cl</u> < 1	$\frac{Cl - Na}{Mg} < 1$	хлоридно-магниевый (MgCl ₂₎	Воды морей и океанов и зоны затрудненного водообмена (морская)		
	$\frac{Cl - Na}{Mg} > 1$	хлоридно- кальциевый (CaCl ₂)	Воды зон отсутствия или затрудненного водообмена, особенно при высокой их минерализации (глубинная)		

Определение типа воды по классификации В.А. Сулина

Согласно данным анализа (см. табл. 2), все исследованные пробы относятся к хлоридномагниевому типу по классификации В.А. Сулина. Воды хлормагниевого типа характерны для земной поверхности и зоны свободного и затрудненного водообмена (см. табл. 3).

19

Классификация по Пальмеру. Для характеристики воды также применяется классификация по Пальмеру, которая основана на содержании в воде тех или иных групп солей. Для оценки нефтяных попутных вод используются характеристики по Пальмеру – по группам солей, образованным из ионов по правилу Фрезениуса.

В соответствии с правилом Фрезениуса, Cl^- соединяется с Na^+ ; при избытке Cl^- его остаток - с Mg^{2+} , а в случае преобладания и над Mg^{2+} - с Ca^{2+} .

При избытке иона натрия его остаток соединяется с сульфат-ионом, а в случае преобладания натрия и над сульфатом - с гидрокарбонатом (рис. 16). Пальмер предложил выделять классы по соотношению сумм ионов щелочных металлов Na⁺+ K⁺(a), сильных кислот SO4²⁻+ Cl⁻(d) и щелочноземельных металлов Ca²⁺+ Mg²⁺(b) (Е.Ш. Сейтхазиев, Г.Г. Байбурина, ТОО «КМГ Инжиниринг», «Каспиймунайгаз», г. Атырау, 2016 г.).

Рис. 16. Правило Фрезениуса

Пальмер выделил шесть солевых характеристик. Основное значение имеют: первая соленость (S1), вторая соленость (S2), первая щелочность (A1) и вторая щелочность (A2). Согласно табл. 4, по классификации Пальмера все исследованные пробы относятся к третьему классу (S1S2A2).

Таблица 4

Класс	Соотношение ионов (мг*Э)	Характеристики Пальмера	Примечания		
1	Na+K>Cl-+SO4 ²	A1>0,S2=0,S3=0 S1A1A2	Щелочные воды, связанные с кристаллическими породами и нефтяными месторождениями в осадочных породах		
2	$Na+K = Cl-+SO_4^2$	A1=0,S2=0,S3=0 S1A2A1	Промежуточный тип воды, которые практически не встречаются		
3	Na+K <cl-+so4<sup>2</cl-+so4<sup>	A1=0,S2>0,S3=0 S1S2A2	Жесткие воды, чаще всего связанные с осадочными породами		
4	a) $(Na+K+Mg^{2+}+Ca^2) > r Cl-+SO_4^2$ b) $(Na+K+Mg_2++Ca^2)=Cl-+SO42$	A1=0,S2=0,S3=0	Воды, близкие по составу к морской воде, или грунтовые воды засушливых районов		
5	Na+K+Mg ²⁺ +Ca ² <cl-+so<sub>42</cl-+so<sub>	A1=0,S2=0,S3>0 S1S2A1	Кислые воды рудных месторождений с повышенной концентрацией водородных ионов и присутствием трехвалентных металлов		

Определение типа воды по классификации Пальмера

Диаграмма Пайпера. Диаграмма Пайпера представляет собой две тригонограммы, спроецированные на ромб, и позволяет определить 4 типа воды: 1) Na-Cl - морские и глубоководные грунтовые воды; 2) Ca-SO4 - гипсовая грунтовая вода, шахтная дренажная вода; 3) Ca-HCO₃ - мелкие пресные подземные воды; 4) Na-HCO₃ - воды, измененные под влиянием ионного обмена (рис. 17).

Рис.6. Диаграмма Пайпера для исследованных проб воды

Левый треугольник демонстрирует состав катионов, а правый – анионов. Значения в треугольнике вычисляются следующим образом: процентные содержания Mg, Ca и Na+K катионов - по формулам 1-3:

$$Mg(\%) = \frac{Mg(meq/kg)}{(Mg+Ca+Na+K)}$$
(1),

$$Ca(\%) = \frac{Ca(meq/kg)}{(Mg+Ca+Na+K)}$$
(2),

$$Na + K(\%) = \frac{Na + K(meq/kg)}{(Mg + Ca + Na + K)}$$
(3).

Пересечение точек значений катионов и анионов проб в ромбе определяет их тип. Построение диаграммы Пайпера показало, что вода из добывающей скв. К-026 отличается от остальных вод. Для нагнетательных скважин и БКНС характерно преобладание ионов CaSO4²⁻ с вкладом воды NaCl, что присуще смешанным водам гипсовых, грунтовых, или шахтного дренажного с водой морского и грунтового источников.

Диаграмма Стиффа. Метод «полигонов» в продольных координатах предложен Стиффом в 1951 г. для наглядности и удобного сравнения состава вод. Так, при высоком содержании солей в воде (ионов Na, K, Cl) полигон будет расширяться кверху, что характерно для очень соленых морских вод. При высокой щелочности (содержания Ca и гидрокарбонатов HCO₃) диаграмма будет максимально широкой на средней координате, что характерно для пресных вод. И еще одними из наиболее важных компонентов являются Mg и сульфаты (SO₄), которые указаны в нижних углах диаграммы (Е.Ш. Сейтхазиев, Г.Г. Байбурина, ТОО «КМГ Инжиниринг» «Каспиймунайгаз», г. Атырау, 2016 г.).

Таким образом, по диаграмме Стиффа можно заключить, что среди исследованных проба из скв. К-026 имеет относительно высокое содержание солей, по сравнению с сульфатами и карбонатами (рис. 18). На диаграмме Стиффа отражено, что ионные составы воды нагнетательных скважин К-024 и К-001 и блочной кустовой насосной станции очень сходные, несмотря на то, что пробы отбирались в разные годы (2017 и 2019 гг.).

Рис. 18. Диаграмма Стиффа для исследованных проб

На рис. 19 представлена схема расположения скважин на 01.01.2019 г., на которой черным квадратом выделен участок обводненной скв. К-026 и нагнетательных скважин К-001,

K-024. По результатам анализа пластовой и закачиваемой воды обводнение продукции скв. К-026 напрямую зависит от закачки в нагнетательные скважины, поэтому дальнейшем можно рекомендовать применение потокоотклоняющей технологии для минимизации обводнения. Относительно небольшая концентрация NaCl в воде из скв. К-026 может быть связана с взаимодействием воды с нефтью и породой, что может повлиять на изменение ионного состава попутно добываемой воды.

Рис. 19. Схема расположения исследованных нагнетательных и добывающей скважин *Скважины: 1 – добывающие, 2 – нагнетальные; 3 – изогипсы.*

Заключение

Таким образом, по исследуемым 46 пробам нефти из скважин месторождения проведена многомерная газовая хроматография (LTM-MDGC), позволившая определить различия в исследуемых пробах нефти. После наложения выделенных групп образцов проб на структурную карту месторождения выявлено отличие нефти северо-восточной части от нефти юго-западной части месторождения.

Результаты резервуарной геохимии должны внести корректировки в геологическую и гидродинамическую модели месторождения по пропускной способности стратиграфически экранированных блоков. С большой степенью вероятности, крупные разломы в основном не являются гидродинамическими барьерами, однако по залежи можно выделить 2 флюидальные PVT модели.

По дендрограмме нефти Варда и по зависимости РСА также возможно выявить развитие трещиноватого типа строения коллектора с учетом местоположения добывающих скважин, по которым отмечается хорошая сходимость нефти друг с другом вследствие гидродинамической сообщаемости.

На месторождении, несмотря на массивную залежь (до 400 м), коллекторы имеют хорошую сообщаемость по разрезу, так как пласты не являются изолирующими барьерами.

Исходя из вышеизложенного, можно сделать вывод, что при использовании результатов исследования резервуарной геохимии нефти (отпечатков нефти) с большой степенью уверенности возможно решать вопросы уточнения, выбора подсчетных и эксплуатационных объектов, а также кандидата из числа добывающих скважин к переводу под нагнетание, и при этом отказаться от необходимости проведения некоторых дорогостоящих видов исследований.

Невысокая минерализация попутнодобываемой воды из скв. К-026 сразу подтвердила влияние на обводненность продукции скважины действующей системы ППД, так как анализ проб пластовой воды, отобранных на поисково-разведочном этапе, показал минерализацию пластовой воды до 130 г/л, и вода, по классификации В.А. Сулина, относится к хлориднокальциевому типу. Рассмотрение образцов проб пластовых флюидов различными методами и классификациями показывает, что по химическому составу воды также можно составить наглядные примеры сходства. Необходим комплекс исследований для достижения рациональной системы разработки месторождений.

Литература

Herwig G., Hempton M. Integrated reservoir geochemistry in Nigeria // Society of Petroleum Engineers. - 2005. - Vol. 5. - P.16-28.

Herwig G., Hempton M., Van der Veen F., Kreulen R. Integrated Reservoir geochemistry: Finding Oil by Reconstructing migration pathways and Paleo Oil-water condition. Society of Petroleum Engineers, SPE 56896, Aberdeen, Scotland. - 1999. - Vol 3. - P.1-4.

Schenglay Ya. Fundamentals of petrophysics // Petroleum Industry Press and Springer Verlag GmbH Germany. - 2017. - 502 p. DOI: <u>https://doi.org/10.1007/978-3-662-55029-8</u>

Scott A.S., Allen D.U., Paul D.B. Recognition of and Allocation Among Multiple Sources of PAH in Urban Sediments // Environmental Claims Journal. - 2001. - Vol. 13. - Issue 4. - P.141-158. DOI: <u>https://doi.org/10.1080/10406020108500498</u>

Seytkhaziev E.Sh., Sarsenbekov N.D.

Atyrau branch of LLP "KMG Engineering", Atyrau, Republic of Kazakhstan, Seitkhaziyev.Y@llpcmg.kz, Sarsenbekov.n@llpcmg.kz

INTERPRETATION OF GEOCHEMICAL RESEARCHES OF OIL AND FORMATION WATER OF ONE PARTICULAR OIL FIELD (REPUBLIC OF KAZAKHSTAN)

46 oil samples were collected at the wellheads of different wells of a particular oil field and "oil fingerprinting" was performed by gas chromatographic analysis on LTM-MD-GC in order to understand the fluid connectivity of the reservoir within the field. This field located in the eastern edge of the Caspian Basin. According to the results of cluster analyzes, it was found that the studied samples of the north-eastern part of the oil field differ from those of the south-western part. Since the oil field has a massive reservoir height, all wells operate with minimum water-cut values, except for the production well. In this regard, the ionic composition of the water and the titration method were used to analyze the ionic composition of water, separated from the oil of producing well, two neighboring injection wells and block cluster pumping station of this field, to determine the ionic composition and identify differences and similarities of waters at the molecular level. According to the results of the analyzes, we came to the conclusion that all the studied formation water samples have common origin. The relatively high NaCl value in producing well water may be due to the high concentration of chloride in the oil.

Keywords: oil fingerprinting, water fingerprinting, reservoir fluid connectivity, massive reservoir, Caspian Basin, Republic of Kazakhstan.

References

Herwig G., Hempton M. Integrated Reservoir geochemistry in Nigeria. Society of Petroleum Engineers, 2005, vol. 5, pp.16-28.

Herwig G., Hempton M., Van der Veen F., Kreulen R. Integrated Reservoir geochemistry: Finding Oil by Reconstructing migration pathways and Paleo Oil-water condition. Society of Petroleum Engineers, SPE 56896, Aberdeen, Scotland, 1999, vol. 3, pp. 1-4.

Schenglay Ya. Fundamentals of petrophysics. Petroleum Industry Press and Springer Verlag GmbH Germany, 2017, 502 p. DOI: <u>https://doi.org/10.1007/978-3-662-55029-8</u>

Scott A.S., Allen D.U., Paul D.B. Recognition of and Allocation Among Multiple Sources of PAH in Urban Sediments. Environmental Claims Journal, 2001, vol. 13, issue 4, pp.141-158. DOI: <u>https://doi.org/10.1080/10406020108500498</u>

© Сейтхазиев Е.Ш., Сарсенбеков Н.Д., 2020

