Белоновская Л.Г., Булач М.Х., Гмид Л.П.

РОЛЬ ТРЕЩИНОВАТОСТИ В ФОРМИРОВАНИИ ЁМКОСТНО-ФИЛЬТРАЦИОННОГО ПРОСТРАНСТВА СЛОЖНЫХ КОЛЛЕКТОРОВ

В статье приведены основные положения учения о трещиноватости, разработанные во ВНИГРИ, знание которых помогает при прогнозировании и поисках трещинных коллекторов. Предложен экспресс-метод оценки общей (фоновой) трещиноватости и коллекторского потенциала пород, позволяющий дать предварительную оценку фильтрационных и ёмкостных возможностей интересующей части разреза по литологии и текстуре пород. Подчеркивается необходимость комплексного подхода при изучении и прогнозе сложных трещинных коллекторов.

Ключевые слова: трещиноватость, сложные коллекторы нефти и газа, коллекторский потенциал, генетическая классификация трещин, микротрещины.

Во ВНИГРИ накоплен опыт многолетних исследований сложных порово-трещинных коллекторов, собран богатый фактический и шлифовой материал по нефтегазоносным провинциям России и ее обрамления, где они являются основными объектами поисков, разведки и разработки скоплений углеводородов, разработан комплекс исследований и оценки сложных коллекторов. В многочисленных и разнообразных публикациях сосредоточен обширный фактический и методический материал по многочисленным нефтегазопоисковым регионам России.

Эти данные нуждались в обобщении с позиций современных представлений по проблеме карбонатных коллекторов, что явилось целью выполненных в последние годы работ [Булач, Гмид, Белоновская, 1996; Белонин и др., 2005].

В связи с тем, что в сложных коллекторах возрастает роль трещин, часто являющихся основными путями фильтрации флюидов и участвующих в той или иной мере в формировании их емкостного пространства, без учета основных закономерностей трещиноватости невозможно прогнозирование, подсчет запасов, разработка в них залежей УВ. Во ВНИГРИ, являющемся пионером в вопросах изучения трещиноватости, разработки в этом направлении ведутся с 50-х годов прошлого столетия, когда был сектор трещинных коллекторов под руководством проф. Е.М. Смехова.

На основании полевых и экспериментальных исследований, проводимых в различных регионах Советского Союза, были разработаны теоретические и методические аспекты проблемы трещиноватости [Смехов, 1974; Методические рекомендации..., 1989 и др.].

Изучение трещинных коллекторов проводилось и во ВНИГНИ под рук. проф. К.И. Багринцевой [1999], а также в целом ряде других региональных организаций.

Ниже приведены некоторые основные положения учения о трещиноватости, разработанные во ВНИГРИ, знание которых помогает при прогнозировании и поисках трещинных коллекторов.

Существуют многочисленные классификации трещин (разрывных нарушений), основанные на их генетических и механических признаках. Среди них известны классификации разрывов В.Н. Белоусова, А.Е. Михайлова, В.А. Гзовского и др. Несмотря на полноту охвата различных сторон явления трещиноватости, эти классификации для целей изучения коллекторов сложного типа оказались недостаточно информативными. Учитывая это обстоятельство, во ВНИГРИ разработана генетическая классификация трещин применительно к трещиноватым породам, которые могут рассматриваться как потенциальные коллекторы нефти и газа (рис. 1) [Методические рекомендации..., 1989].

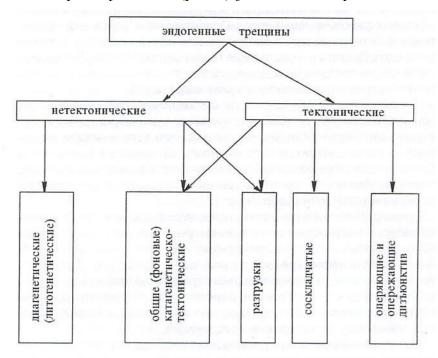


Рис. 1. Генетическая классификация трещин

Рассмотрим эту классификацию. Как известно, все многообразие трещин, развитых в земной коре, условно можно разделить на две крупные категории: экзогенные и эндогенные. Экзогенные трещины, вызванные внешними по отношению к Земле силами, развиты, преимущественно, в самых верхних слоях литосферы и при поисках коллекторов не играют существенной роли.

Эндогенные трещины включают в себя самые разнообразные по происхождению трещины, наблюдаемые в горных породах. Образование их обусловлено как тектоническими

процессами, так и литологическими факторами, в той или иной степени связанными с тектоникой. В природе не существует четких границ влияния различных процессов на деформации, возникающие в земной коре, ибо нередко тектонические и нетектонические факторы накладываются друг на друга. Поэтому в предлагаемой классификации отнесение трещин к тектоническим и нетектоническим не является определяющим. Ниже приводятся характеристики выделенных по генезису групп трещин (рис. 1).

Диагенетические трещины образуются в литифицирующемся осадке за счет уплотнения, дегидратации и различных постседиментационных преобразований (перекристаллизации, доломитизации и др.). В подавляющем большинстве они заполнены органическим или минеральным веществом, близким по химическому составу вмещающему осадку. Эти трещины в силу своей залеченности при изучении трещинных коллекторов практического значения не имеют.

Общие трещины (фоновые) имеют катагенетическо-тектоническое происхождение. Они образуются уже в литифицированной породе на стадии раннего катагенеза или позднего диагенеза, в основном, как трещины отрыва (в пластичных породах-скола) в результате растяжения, вызванного изменением объема пласта под влиянием нагрузки вышележащих толщ. Это наиболее многочисленная категория трещин, пользующаяся повсеместным развитием и являющаяся своеобразным фоном, на который накладываются трещины более поздних генераций. Положение фоновых трещин внутри слоя жестко детерминировано. Обычно они перпендикулярны, в пластичных породах наклонны к слоистости и группируются в системы, на ориентировку которых определяющее влияние оказывают тектонические и общепланетарные процессы. Протяженность их ограничена пределами слоя, плотность же является функцией мощности слоя и его литологии. Роль этих трещин в тектонической жизни земной коры весьма существенна, ибо при колебательных процессах небольшой амплитуды благодаря изменению их раскрытости происходит сжатие и расширение пород без существенных пликативных и дизъюнктивных деформаций. Общие трещины в значительной мере предопределяют ориентировку собственно тектонических трещин и более крупных дизъюнктивов.

Трещины разгрузки образуются в результате изменения геостатического давления, вызванного воздыманием пород. Порода, находящаяся на глубине в состоянии всестороннего сжатия, при частичной разгрузке может растрескаться по направлениям, обусловленным анизотропией ее физических свойств. Такие трещины нередко наблюдаются при подъеме керна, когда крепкая и монолитная при бурении порода на поверхности либо распадается на

обломки неправильной формы, либо расслаивается по напластованию. К этой категории трещин относятся трещины, параллельные слоистости (в случае наличия ориентированной текстуры породы), а также хаотические прерывистые короткие трещины, преимущественно открытые, за исключением районов с активной неотектоникой, где они могут быть и залеченными в результате интенсивных гидрохимических процессов.

Соскладчатые трещины сопровождают пликативные деформации. Они пользуются преимущественным развитием на участках структуры, находящихся в повышенно напряженном состоянии (участки перегиба слоев - крутые своды, периклинали, крылья). Их интенсивность предопределяется величиной и характером деформации и механическими свойствами деформируемых пород. Ориентировка обусловлена направлением действующих сил, а протяженность не ограничена пределами одного слоя. Достаточно часто такие трещины развиваются по одной из систем общих трещин, если ориентировки последних совладают или близки с направлениями тектонических напряжений.

Оперяющие или опережающие дизьюнктивы трещины имеют локальное развитие и линейно вытянутый ареал распространения. Их ориентировка жестко связана с направлением тектонических напряжений их порождающих, а интенсивность обусловлена механизмом формирования разрыва, физическими свойствами вмещающих пород, а также морфологией самого смещения. Для таких трещин характерна прерывистость, кулисообразность.

Руководствоваться предложенной классификацией трещин целесообразно, в частности, при выявлении участков, где помимо повсеместно развитых общих трещин (фон), можно ожидать появления собственно тектонических трещин, а также трещин разгрузки. Так как общие повсеместно развитые трещины ограничены пределами одного слоя, участие их в фильтрационной системе обуславливают собственно тектонические секущие слои трещины, образующиеся в результате пликативных или дизъюнктивных дислокаций.

Все вышеперечисленные положения необходимо учитывать при прогнозе и поисках коллекторов сложного типа и, в частности, карбонатных коллекторов.

Когда же исследователь сталкивается с задачей изучения коллекторских свойств, в том числе и трещиноватости, какого-то конкретного объекта, то фактический материал, которым он может при этом пользоваться, ограничивается керном. При изучении трещиноватости на глубине мы имеем дело, в основном, с микротрещинами, ограниченными в своем протяжении малыми размерами исследуемого объекта (шлифа), к тому же обычно не ориентированного в пространстве. При их классификации на первый план выступают не

столько генетические, обычно весьма трудноопределимые в шлифах аспекты, сколько морфологические, такие как ориентировка трещин по отношению к слоистости, их конфигурация, выполнение или раскрытость трещин и др. Именно на этой основе построена нижеприведенная схема (табл. 1). В отличие от классификации макротрещин (рис. 1), которая разрабатывалась, в основном, на материале изучения обнажений для целей прогноза наиболее трещиноватых участков разреза, ее целесообразно использовать при изучении влияния трещиноватости на коллекторские свойства пород уже конкретных геологических объектов [Методические рекомендации..., 1989].

Микротрещины по своему происхождению также разделяются на литогенетические, катагенетическо-тектонические, трещины разгрузки собственно тектонические. Образование литогенетических трещин связано с литологическими процессами: уплотнением, дегидратацией осадка (породы), их перекристаллизацией, доломитизацией, происходящими, в основном, на стадии диагенеза. Литогенетические трещины имеют ветвящуюся (дендритообразную) форму, контуры стенок их извилистые, расплывчатые. Проходят литогенетические трещины между зернами карбоната, терригенного материала, форменными элементами (органическими остатками, их обломками, оолитами, сгустками, комками и т.п.) или огибают их.

Литогенетические трещины имеют незначительную протяженность и затухают в пределах маломощных слойков. Заполнены они минеральным веществом, близким по составу к вмещающей породе:

- кальцитом, доломитом, ангидритом и др.;
- тонкодисперсным глинисто-органическим веществом;
- твердым битумом черного или коричневого цвета.

Ширина литогенетических трещин колеблется в широких пределах (5 - 50 мкм). Участия в формировании коллекторских свойств собственно литогенетические трещины, в силу своей залеченности, не принимают. Однако в тектонически активных зонах по ним, как более ослабленным участкам, могут развиваться открытые трещины.

Микротрещины, образование которых связано с воздействием на породы тектонических напряжений (катагенетическо-тектонические, трещины разгрузки и собственно тектонические), обладают значительной протяженностью по сравнению с литогенетическими трещинами. По времени возникновения они являются разновозрастными, что определяется сменой напряжений, действующих на горную породу.

Морфологическая характеристика микротрещин

Генезис трещин	Расположение трещин по отношению к напластованию	Конфигурация трещин	Протяженность трещин	Преобладающая ширина трещин, мкм	Взаимоотношение трещин со структурой породы	Заполнитель
литогенетические (преимущественно диагенетические)	хаотические	извилистая, ветвящаяся; контуры трещин расплывчатые	короткие, часто прерывистые, затухают в пределах шлифа	в среднем 5 - 50	располагаются между породообразующимися компонеитами, огибают их	близок по составу к вмещающей породе
катагенетические тектонические	разнонаправленные, группируются в определенные системы	слабо извилистая, прямолинейнэя, ступенчатая, контуры трещин достаточно четкие	протяженные (секут весь шлиф) реже короткие, кулисообразные	окрытых (или с легким битумом) трещин — преимущественно 10-20 мкм, залеченных - самая различная	рассекают и огибают породообразующие компоненты, стилолиты, трещины более ранних генераций	без заполнителя, минеральное вещество, битум
трещины разгрузки	в основном параллельно напластованию	слабо извилистая с четкими контурами	протяженные и короткие, кулисообразные	открытых (или с легким битумом) трещин - преимущественно 10-20 мкм, залеченных - самая различная, вплотьдо 1 см и более	огибают зерна, породообразующие компоненты	чаще открытые, но могут быть залечены минеральным веществом и битумом
собственно тектонические трещины	разнонаправленные, группируются в определенные системы	прямолинейная с четкими контурами	преимущественно секут весь шлиф, иногда кулисообразные, затухающие	открытых преимущественно 10-30 мкм; залеченных - самая различная	секут породообразующие компоненты	без заполнителя (преимуществен- но), минеральное вещество, битум

Они группируются в определенные системы, располагаясь параллельно, перпендикулярно и под углом к напластованию. Трещины слабо извилистые или прямолинейные. Стенки их четкие, ровные или шероховатые. На своем пути эти трещины рассекают или огибают (трещины разгрузки) зерна, форменные элементы, цементирующее вещество. Они обычно секут литогенетические трещины, стилолитовые швы, трещины более ранних генераций или проходят внугри их.

Тектонические трещины могут быть открытыми, со следами легкого желтого битума (нефти) или целиком выполненными минеральным веществом. В последнем случае расположение битума и минерального вещества мозаичное или зональное. Битум (нефть) располагается по спаям зерен, между ними, иногда пигментиреют зерна минерального вещества.

Открытые трещины чаще всего являются эффективными. Они принимают участие в фильтрации флюидов, способствуют образованию вторичной пористости.

Состав выполняющего вещества, последовательность пересечения трещин друг с другом позволяют судить об относительном возрасте трещин, выделять среди группы трещин различной генерации.

При изучении в шлифах пород конкретного геологического разреза к самой ранней генерации следует относить литогенетические трещины, более поздними следует рассматривать трещины, выполненные минеральным веществом, твердым битумом. Они в свою очередь могут быть нескольких генераций. Самыми молодыми по времени образования являются открытые трещины и трещины с примазками легкого битума (нефти) или заполненные им.

Состав минерального заполнителя и число генераций трещин определяется конкретной геологической обстановкой: характером разреза, тектоническими и гидрогеологическими условиями.

Параметрами трещин являются их ширина (раскрытость) и протяженность. Ширина эффективных трещин колеблется в широких пределах, она регламентируется вещественным составом и структурой вмещающих пород, а также глубиной их залегания. Многочисленные наблюдения показывают, что на малых глубинах (до 1 км) открытые трещины характеризуются наибольшей шириной (до 50 мкм), на средних (3 - 4 км) она не превышает 20 - 25 мкм, на глубинах свыше 4 км раскрытость трещин сокращается до 10 - 15 мкм и менее. Раскрытость трещин по длине может быть относительно равномерной или неравномерной.

Протяженность трещин зависит от их генезиса. Литогенетические трещины обычно короткие, длина их составляет доли миллиметра, редко достигает единиц миллиметра. Трещины тектонического происхождения более протяженные (их наблюдаемая длина регламентируется размером шлифа). Кулисообразные тектонические трещины могут быть весьма короткими (2 - 3 мм).

Открытые тектонические трещины являются проводниками флюидов. В зависимости от химического состава этих флюидов, гидродинамических условий, трещины могут быть залеченными минеральным веществом или окисленным битумом, или по ним будет происходить частичное растворение вмещающей породы с образованием вторичных пор выщелачивания и каверн.

Роль трещиноватости в фильтрации флюидов особенно возрастает в плотных низкопоровых разностях с малой межзерновой проницаемостью. Такие породы могут образовывать трещинно-поровый, порово-трещинный, а в отдельных случаях и чисто трещинный (по классификации ВНИГРИ) коллектор, где фильтрация флюидов осуществляется преимущественно по трещинам [Методические рекомендации..., 1989].

Определение величины трещинной проницаемости связано с трудностями и наиболее надежно осуществляется промысловыми методами.

Е.С. Роммом [1966] на основании гидродинамических расчетов и экспериментов были предложены формулы расчета трещинной проницаемости и плотности (густоты) трещин по большим петрографическим шлифам:

$$K_{T} = Ab^{3} \cdot {}^{1}/S;$$

$$T = B^{\bullet 1}/S$$
,

где К_т - трещинная проницаемость, мД;

Т - плотность трещин, '/м; А,

В - соответствующие коэффициенты;

b - раскрытие трещин, мкм; l -протяженность трещин, мм;

S - площадь шлифа, мм²;

Коэффициент А меняется в зависимости от ориентировки трещин так:

A = 0,0171 -для хаотических трещин при двух системах взаимно перпендикулярных трещин;

A = 0.0228 - при трех системах взаимно перпендикулярных трещин;

A = 0.0342 - для горизонтальных трещин.

Коэффициент В, отражающий размерность входящих в формулу величин, равен 1570. После преобразования известных формул Е.С. Ромма была получена формула (1):

$$K_{T} = A^{\bullet} \frac{b^{3}}{B} \frac{T}{}$$
 (1)

Как видно из формулы (1), трещинная проницаемость, в основном, определяется раскрытостью трещин (эта величина входит в формулу в третьей степени), а меньшей мере - плотностью трещин, их ориентировкой [Булач, Гмид, Белоновская, 1996].

Руководствуясь формулой (1) нами была составлена расчетная табл. 2 и график (рис. 2) определения величины трещинной проницаемости для различных значений раскрытия трещин и их плотности (густоты) [Булач, Гмид, Белоновская, 1996].

Раскрытие трещин на глубине свыше 2 км обычно не превышает 25 мкм, чаще всего, колеблясь в пределах 10 - 12 мкм. При составлении таблицы интервал раскрытости трещин был взят с запасом от 5 до 50 мкм. При расчете густоты трещин мы ограничились интервалом от 10 до 150^{-1} /м, хотя он может колебаться в более широких пределах, т.к. зависит от тектонической напряженности региона, литологии и слоистости разреза.

Таблица 2 Расчетная таблица определения трещинной проницаемости при различной раскрытости, плотности и ориентировке трещин

		Трещинная проницаемость, мД		
Раскрытие трещин, мкм	Плотность трещин, ¹ /м	Трещины хаотические, две системы взаимно- перпендикулярных трещин	Три системы взаимно- перпендикулярных трещин	Трещины горизонтальные
		(A - 0.0171)	(A - 0.0228)	(A - 0.0342)
1	2	3	4	5
	10	0.0136	0.018	0.027
	20	0.027	0.036	0.054
	30	0.041	0.055	0.082
	40	0.054	0.073	0.109
	50	0.078	0.091	0.136
	60	0.081	0.109	0.163
	70	0.095	0.127	0.190
5	80	0.109	0.146	0.218
	90	0.122	0.164	0.245
	100	0.136	0.182	0.272
	110	0.150	0.200	0.300
	120	0.163	0.217	0.326
	130	0.177	0.245	0.354
	140	0.190	0.253	0.381
	150	0.204	0.272	0.408

1	2	3	4	5
	10	0.109	0.145	0.218
	20	0.218	0.290	0.436
	30	0.327	0.436	0.653
	40	0.436	0.581	0.871
	50	0.545	0.726	1.089
	60	0.654	0.871	1.307
	70	0.762	1.017	1.525
10	80	0.871	1.162	1.743
	90	0.980	1.307	1.960
	100	1.089	1.452	2.178
	110	1.198	1.598	2.396
	120	1.307	1.742	2.614
	130	1.416	1.888	2.831
	140	1.525	2.033	3.049
	150	1.634	2.178	3.267
	10	0.368	0.490	0.735
	20	0.735	0.980	1.470
	30	1.103	1.470	2.206
	40	1.470	1.961	2.941
	50	1.838	2.451	3.676
	60	2.206	2.941	4.411
	70	2.573	3.431	5.146
15	80	2.941	3.921	5.882
	90	3.308	4.411	6.617
	100	3.676	4.901	7.352
	110	4.044	5.391	8.087
	120	4.411	5.882	8.822
	130	4.779	6.372	9.558
	140	5.146	6.862	10.293
	150	5.514	7.352	11.028
	10	0.871	1.162	1.743
	20	1.743	2.324	3.485
	30	2.614	3.485	5.228
	40	3.485	4.647	6.971
	50	4.357	5.809	8.713
	60	5.228	6.971	10.456
	70	6.099	8.133	12.199
20	80	6.971	9.294	13.941
	90	7.842	10.456	15.684
	100	8.713	11.618	17.427
	110	9.585	12.780	19.169
	120	10.456	13.944	20.912
	130	11.327	15.106	22.655
	140	12.198	16.269	24.398
	150	13.070	17.430	26.141

1	2	3	4	5
	10	1.702	2.269	3.404
	20	3.404	4.538	6.807
	30	5.105	6.807	10.211
	40	6.807	9.076	13.615
	50	8.509	11.346	17.018
	60	10.211	13.615	20.422
	70	11.913	15.844	23.826
25	80	13.614	18.153	27.229
	90	15.316	20.422	30.633
	100	17.018	22.691	34.037
	110	18.720	24.960	37.440
	120	20.422	27.228	40.844
	130	22.123	29.497	44.248
	140	23.825	31.766	47.652
	150	25.527	34.035	51.056
	10	2.941	3.921	5.882
	20	5.882	7.842	11.762
	30	8.822	11.763	17.644
	40	11.763	15.684	23.526
	50	14.645	19.605	29.408
	60	17.645	23.526	35.289
	70	20.585	27.447	41.171
30	80	23.526	31.368	47.052
30	90	26.467	35.289	52.934
	100	29.408	39.210	58.815
	110	32.348	43.131	64.697
	120	35.290	47.052	70.578
	130	38.230	50.973	76.460
	140	41.171	54.894	82.341
	150	44.112	58.815	88.223
	10	4.670	6.226	9.340
	20	9.340	12.453	18.679
	30	14.009	18.679	28.019
	40	18.679	24.906	37.359
	50	23.349	31.132	46.698
	60	28.019	37.358	56.038
	70	32.690	43.585	65.378
35	80	37.358	49.811	74.717
	90	42.028	56.038	84.057
	100	46.700	62.264	93.397
	110	51.368	68.491	102.736
	120	56.038	74.717	112.075
	130	60.707	80.943	121.415
	140	65.377	87.170	130.754
	150	70.047	93.396	140.094
	150	, 0.017	75.570	110.071

10	1	2	3	4	5
30			6.970	9.294	13.941
40 27.883 37.177 55.766 50 34.854 46.471 69.707 60 41.824 55.766 83.648 70 48.795 65.060 97.590 40 80 55.766 74.354 111.530 90 62.736 83.648 125.473 100 69.707 92.943 139.414 110 76.678 102.237 153.355 120 83.648 111.530 167.297 130 90.619 120.825 181.238 140 97.590 130.119 195.180 150 104.561 139.413 209.121 10 9.925 13.233 19.850 20 19.850 26.467 39.700 30 29.775 39.700 59.551 40 39.700 59.551 79.401 119.101 70 69.476 92.634 138.951 45 80 79.401 105.868		20	13.941	18.588	27.883
50 34.854 46.471 69.707 60 41.824 55.766 83.648 70 48.795 65.060 97.590 40 80 55.766 74.354 111.530 90 62.736 83.648 125.473 100 69.707 92.943 139.414 110 76.678 102.237 153.355 120 83.648 111.530 167.297 130 90.619 120.825 181.238 140 97.590 130.119 195.180 150 104.561 139.413 209.121 10 9.925 13.233 19.850 20 19.850 26.467 39.700 30 29.775 39.700 59.551 40 39.700 52.934 79.401 50 49.626 66.176 99.251 60 59.551 79.401 119.101 178.652 90 89.326 119.101 17		30	20.912	27.883	41.824
40 80 55.766 74.354 111.530 40 80 55.766 74.354 111.530 90 62.736 83.648 125.473 100 69.707 92.943 139.414 110 76.678 102.237 153.355 120 83.648 111.530 167.297 130 90.619 120.825 181.238 140 97.590 130.119 195.180 150 104.561 139.413 209.121 10 9.925 13.233 19.850 20 19.850 26.467 39.700 30 29.775 39.700 52.934 79.401 40 39.700 52.934 79.401 50 49.626 66.176 99.251 40 39.700 52.934 79.401 50 49.626 66.176 99.251 60 59.551 79.401 119.101 70 69.476 92.634 138.951 45 80 79.401 105.868 158.802 100 99.251 132.334 198.502 110 10,176 145.568 118.352 100 99.251 132.334 198.502 110 10,176 145.568 218.352 110 10,91.76 145.568 218.352 120 119.101 158.681 238.202 130 129.025 171.904 258.053 140 138.951 185.128 277.903 150 148.875 198.351 297.753 10 13.615 181.153 27.229 30 40.844 54.459 81.688 40 54.459 72.611 108.917 50 68.073 90.764 136.147 60 81.688 108.917 163.376 70 95.303 127.070 190.605 50 80 108.917 145.223 217.834 90 122.532 163.376 245.064 100 136.147 181.529 272.293 110 149.761 199.682 299.522 120 163.375 217.835 326.752 130 176.990 235.988 353.981 140 190.604 254.141 381.210		40	27.883	37.177	55.766
40 80 55.766 74.354 111.530 90 62.736 83.648 125.473 100 69.707 92.943 139.414 110 76.678 102.237 153.355 120 83.648 111.530 167.297 130 90.619 120.825 181.238 140 97.590 130.119 195.180 150 104.561 139.413 209.121 10 9.925 13.233 19.850 20 19.850 26.467 39.700 30 29.775 39.700 59.551 40 39.700 52.934 79.401 50 49.626 66.176 99.251 60 59.551 79.401 119.101 70 69.476 92.634 138.951 45 80 79.401 105.868 158.802 90 89.326 119.101 178.652 100 99.251 132.334 1		50	34.854	46.471	69.707
40 80 55.766 74.354 111.530 90 62.736 83.648 125.473 100 69.707 92.943 139.414 110 76.678 102.237 153.355 120 83.648 111.530 167.297 130 90.619 120.825 181.238 140 97.590 130.119 195.180 150 104.561 139.413 209.121 10 9.925 13.233 19.850 20 19.850 26.467 39.700 30 29.775 39.700 59.551 40 39.700 52.934 79.401 50 49.626 66.176 99.251 60 59.551 79.401 119.101 70 69.476 92.634 138.951 45 80 79.401 105.868 158.802 90 89.326 119.101 178.652 100 199.251 132.334		60	41.824	55.766	83.648
90 62.736 83.648 125.473 100 69.707 92.943 139.414 1110 76.678 102.237 153.355 120 83.648 111.530 167.297 130 90.619 120.825 181.238 140 97.590 130.119 195.180 150 104.561 139.413 209.121 10 9.925 13.233 19.850 26.467 39.700 30 29.775 39.700 52.934 79.401 50 49.626 66.176 99.251 60 59.551 79.401 119.101 70 69.476 92.634 138.951 45 80 79.401 105.868 158.802 100 99.251 132.334 198.502 100 99.251 132.334 198.502 100 99.251 132.334 198.502 110 109.176 145.568 218.352 120 119.101 158.681 238.202 130 129.025 171.904 258.053 140 138.951 185.128 277.903 150 148.875 198.351 297.753 10 13.615 18.512 277.753 10 13.615 18.153 27.229 20 27.229 36.306 54.459 70.601 108.917 50 68.073 90.764 136.147 60 81.688 108.917 163.376 70 95.303 127.070 190.605 50 80 108.917 145.223 217.834 90 122.532 163.376 245.064 100 136.147 181.529 272.293 110 149.761 199.682 299.522 120 163.375 217.835 326.752 130 176.990 225.988 353.981 140 190.604 2254.141 381.210		70	48.795	65.060	97.590
90 62.736 83.648 125.473 139.414 1110 76.678 102.237 153.355 120 83.648 1111.530 167.297 130 90.619 120.825 181.238 140 97.590 130.119 195.180 150 104.561 139.413 209.121 10 9.925 13.233 19.850 20 19.850 26.467 39.700 59.551 40 39.700 59.551 79.401 119.101 70 69.476 92.634 138.951 100 99.251 132.334 198.591 100 99.251 132.334 198.591 100 99.251 132.334 198.591 100 99.251 132.334 198.591 100 99.251 132.334 198.591 100 99.251 132.334 198.591 100 99.251 132.334 198.591 100 99.251 132.334 198.592 110 109.176 145.568 158.802 119.101 178.652 120 119.101 158.681 238.202 130 129.025 171.904 258.053 140 138.951 185.128 277.903 150 148.875 198.351 297.753 10 13.615 18.153 27.229 36.306 54.459 70.69.17 190.605 50 68.073 90.764 136.147 60 81.688 108.917 163.376 70 95.303 127.070 190.605 50 80 108.917 145.223 217.834 90 122.532 163.376 245.064 100 136.147 181.529 272.293 110 136.147 181.529 272.293 110 136.147 181.529 272.293 110 149.761 199.682 299.522 120 163.375 217.835 326.752 130 176.990 235.988 353.981 140 190.604 254.141 381.210	40	80	55.766	74.354	111.530
110		90	62.736	83.648	125.473
120		100	69.707	92.943	139.414
130		110	76.678	102.237	153.355
140 97.590 130.119 195.180 150 104.561 139.413 209.121 10 9.925 13.233 19.850 20 19.850 26.467 39.700 30 29.775 39.700 59.551 40 39.700 52.934 79.401 50 49.626 66.176 99.251 60 59.551 79.401 119.101 70 69.476 92.634 138.951 45 80 79.401 105.868 158.802 90 89.326 119.101 178.652 100 99.251 132.334 198.502 110 109.176 145.568 218.352 120 119.101 158.681 238.202 130 129.025 171.904 258.053 140 138.951 185.128 277.903 150 148.875 198.351 297.753 10 13.615 18.153 27.229		120	83.648	111.530	167.297
150		130	90.619	120.825	181.238
10		140	97.590	130.119	195.180
20 19.850 26.467 39.700 30 29.775 39.700 59.551 40 39.700 52.934 79.401 50 49.626 66.176 99.251 60 59.551 79.401 119.101 70 69.476 92.634 138.951 45 80 79.401 105.868 158.802 90 89.326 119.101 178.652 100 99.251 132.334 198.502 110 109.176 145.568 218.352 120 119.101 158.681 238.202 130 129.025 171.904 258.053 140 138.951 185.128 277.903 150 148.875 198.351 297.753 10 13.615 18.153 27.229 20 27.229 36.306 54.459 30 40.844 54.459 81.688 40 54.459 72.611 108.917 </td <th></th> <td>150</td> <td>104.561</td> <td>139.413</td> <td>209.121</td>		150	104.561	139.413	209.121
30		10	9.925	13.233	19.850
40 39.700 52.934 79.401 50 49.626 66.176 99.251 60 59.551 79.401 119.101 70 69.476 92.634 138.951 45 80 79.401 105.868 158.802 90 89.326 119.101 178.652 100 99.251 132.334 198.502 110 109.176 145.568 218.352 120 119.101 158.681 238.202 130 129.025 171.904 258.053 140 138.951 185.128 277.903 150 148.875 198.351 297.753 10 13.615 18.153 27.229 20 27.229 36.306 54.459 30 40.844 54.459 81.688 40 54.459 72.611 108.917 50 68.073 90.764 136.147 60 81.688 108.917 145.223		20	19.850	26.467	39.700
50 49.626 66.176 99.251 60 59.551 79.401 119.101 70 69.476 92.634 138.951 45 80 79.401 105.868 158.802 90 89.326 119.101 178.652 100 99.251 132.334 198.502 110 109.176 145.568 218.352 120 119.101 158.681 238.202 130 129.025 171.904 258.053 140 138.951 185.128 277.903 150 148.875 198.351 297.753 10 13.615 18.153 27.229 20 27.229 36.306 54.459 30 40.844 54.459 81.688 40 54.459 72.611 108.917 50 68.073 90.764 136.147 60 81.688 108.917 163.376 70 95.303 127.070 190.605		30	29.775	39.700	59.551
45 60 59.551 79.401 119.101 70 69.476 92.634 138.951 90 89.326 119.101 178.652 100 99.251 132.334 198.502 110 109.176 145.568 218.352 120 119.101 158.681 238.202 130 129.025 171.904 258.053 140 138.951 185.128 277.903 150 148.875 198.351 297.753 10 13.615 18.153 27.229 20 27.229 36.306 54.459 30 40.844 54.459 81.688 40 54.459 72.611 108.917 50 68.073 90.764 136.147 60 81.688 108.917 163.376 70 95.303 127.070 190.605 50 80 108.917 145.223 217.834 90 122.532 163.376		40	39.700	52.934	79.401
45 80 79.401 105.868 158.802 90 89.326 119.101 178.652 100 99.251 132.334 198.502 110 109.176 145.568 218.352 120 119.101 158.681 238.202 130 129.025 171.904 258.053 140 138.951 185.128 277.903 150 148.875 198.351 297.753 10 13.615 18.153 27.229 20 27.229 36.306 54.459 30 40.844 54.459 81.688 40 54.459 72.611 108.917 50 68.073 90.764 136.147 60 81.688 108.917 163.376 70 95.303 127.070 190.605 50 80 108.917 145.223 217.834 90 122.532 163.376 245.064 100 136.147 181.529 <th></th> <td>50</td> <td>49.626</td> <td>66.176</td> <td>99.251</td>		50	49.626	66.176	99.251
45 80 79.401 105.868 158.802 90 89.326 119.101 178.652 100 99.251 132.334 198.502 110 109.176 145.568 218.352 120 119.101 158.681 238.202 130 129.025 171.904 258.053 140 138.951 185.128 277.903 150 148.875 198.351 297.753 10 13.615 18.153 27.229 20 27.229 36.306 54.459 30 40.844 54.459 81.688 40 54.459 72.611 108.917 50 68.073 90.764 136.147 60 81.688 108.917 163.376 70 95.303 127.070 190.605 50 80 108.917 145.223 217.834 90 122.532 163.376 245.064 100 136.147 181.529 272.293 110 149.761 199.682 299.522		60	59.551	79.401	119.101
90 89.326 119.101 178.652 100 99.251 132.334 198.502 110 109.176 145.568 218.352 120 119.101 158.681 238.202 130 129.025 171.904 258.053 140 138.951 185.128 277.903 150 148.875 198.351 297.753 10 13.615 18.153 27.229 20 27.229 36.306 54.459 30 40.844 54.459 81.688 40 54.459 72.611 108.917 50 68.073 90.764 136.147 60 81.688 108.917 163.376 70 95.303 127.070 190.605 50 80 108.917 145.223 217.834 90 122.532 163.376 245.064 100 136.147 181.529 272.293 110 149.761 199.682 299.522 120 163.375 217.835 326.752		70	69.476	92.634	138.951
100 99.251 132.334 198.502 110 109.176 145.568 218.352 120 119.101 158.681 238.202 130 129.025 171.904 258.053 140 138.951 185.128 277.903 150 148.875 198.351 297.753 10 13.615 18.153 27.229 20 27.229 36.306 54.459 30 40.844 54.459 81.688 40 54.459 72.611 108.917 50 68.073 90.764 136.147 60 81.688 108.917 163.376 70 95.303 127.070 190.605 50 80 108.917 145.223 217.834 90 122.532 163.376 245.064 100 136.147 181.529 272.293 110 149.761 199.682 299.522 120 163.375 217.835 32	45	80	79.401	105.868	158.802
110 109.176 145.568 218.352 120 119.101 158.681 238.202 130 129.025 171.904 258.053 140 138.951 185.128 277.903 150 148.875 198.351 297.753 10 13.615 18.153 27.229 20 27.229 36.306 54.459 30 40.844 54.459 81.688 40 54.459 72.611 108.917 50 68.073 90.764 136.147 60 81.688 108.917 163.376 70 95.303 127.070 190.605 50 80 108.917 145.223 217.834 90 122.532 163.376 245.064 100 136.147 181.529 272.293 110 149.761 199.682 299.522 120 163.375 217.835 326.752 130 176.990 235.988 353.981 140 190.604 254.141 381.210 <th></th> <td>90</td> <td>89.326</td> <td>119.101</td> <td>178.652</td>		90	89.326	119.101	178.652
120 119.101 158.681 238.202 130 129.025 171.904 258.053 140 138.951 185.128 277.903 150 148.875 198.351 297.753 10 13.615 18.153 27.229 20 27.229 36.306 54.459 30 40.844 54.459 81.688 40 54.459 72.611 108.917 50 68.073 90.764 136.147 60 81.688 108.917 163.376 70 95.303 127.070 190.605 50 80 108.917 145.223 217.834 90 122.532 163.376 245.064 100 136.147 181.529 272.293 110 149.761 199.682 299.522 120 163.375 217.835 326.752 130 176.990 235.988 353.981 140 190.604 254.141 3		100	99.251	132.334	198.502
130 129.025 171.904 258.053 140 138.951 185.128 277.903 150 148.875 198.351 297.753 10 13.615 18.153 27.229 20 27.229 36.306 54.459 30 40.844 54.459 81.688 40 54.459 72.611 108.917 50 68.073 90.764 136.147 60 81.688 108.917 163.376 70 95.303 127.070 190.605 50 80 108.917 145.223 217.834 90 122.532 163.376 245.064 100 136.147 181.529 272.293 110 149.761 199.682 299.522 120 163.375 217.835 326.752 130 176.990 235.988 353.981 140 190.604 254.141 381.210		110	109.176	145.568	218.352
140 138.951 185.128 277.903 150 148.875 198.351 297.753 10 13.615 18.153 27.229 20 27.229 36.306 54.459 30 40.844 54.459 81.688 40 54.459 72.611 108.917 50 68.073 90.764 136.147 60 81.688 108.917 163.376 70 95.303 127.070 190.605 50 80 108.917 145.223 217.834 90 122.532 163.376 245.064 100 136.147 181.529 272.293 110 149.761 199.682 299.522 120 163.375 217.835 326.752 130 176.990 235.988 353.981 140 190.604 254.141 381.210		120	119.101	158.681	238.202
150 148.875 198.351 297.753 10 13.615 18.153 27.229 20 27.229 36.306 54.459 30 40.844 54.459 81.688 40 54.459 72.611 108.917 50 68.073 90.764 136.147 60 81.688 108.917 163.376 70 95.303 127.070 190.605 50 80 108.917 145.223 217.834 90 122.532 163.376 245.064 100 136.147 181.529 272.293 110 149.761 199.682 299.522 120 163.375 217.835 326.752 130 176.990 235.988 353.981 140 190.604 254.141 381.210		130	129.025	171.904	258.053
10 13.615 18.153 27.229 20 27.229 36.306 54.459 30 40.844 54.459 81.688 40 54.459 72.611 108.917 50 68.073 90.764 136.147 60 81.688 108.917 163.376 70 95.303 127.070 190.605 50 80 108.917 145.223 217.834 90 122.532 163.376 245.064 100 136.147 181.529 272.293 110 149.761 199.682 299.522 120 163.375 217.835 326.752 130 176.990 235.988 353.981 140 190.604 254.141 381.210		140	138.951	185.128	277.903
20 27.229 36.306 54.459 30 40.844 54.459 81.688 40 54.459 72.611 108.917 50 68.073 90.764 136.147 60 81.688 108.917 163.376 70 95.303 127.070 190.605 50 80 108.917 145.223 217.834 90 122.532 163.376 245.064 100 136.147 181.529 272.293 110 149.761 199.682 299.522 120 163.375 217.835 326.752 130 176.990 235.988 353.981 140 190.604 254.141 381.210		150	148.875	198.351	297.753
30 40.844 54.459 81.688 40 54.459 72.611 108.917 50 68.073 90.764 136.147 60 81.688 108.917 163.376 70 95.303 127.070 190.605 50 80 108.917 145.223 217.834 90 122.532 163.376 245.064 100 136.147 181.529 272.293 110 149.761 199.682 299.522 120 163.375 217.835 326.752 130 176.990 235.988 353.981 140 190.604 254.141 381.210		10	13.615	18.153	27.229
40 54.459 72.611 108.917 50 68.073 90.764 136.147 60 81.688 108.917 163.376 70 95.303 127.070 190.605 50 80 108.917 145.223 217.834 90 122.532 163.376 245.064 100 136.147 181.529 272.293 110 149.761 199.682 299.522 120 163.375 217.835 326.752 130 176.990 235.988 353.981 140 190.604 254.141 381.210			27.229	36.306	54.459
50 68.073 90.764 136.147 60 81.688 108.917 163.376 70 95.303 127.070 190.605 50 80 108.917 145.223 217.834 90 122.532 163.376 245.064 100 136.147 181.529 272.293 110 149.761 199.682 299.522 120 163.375 217.835 326.752 130 176.990 235.988 353.981 140 190.604 254.141 381.210		30	40.844	54.459	81.688
60 81.688 108.917 163.376 70 95.303 127.070 190.605 50 80 108.917 145.223 217.834 90 122.532 163.376 245.064 100 136.147 181.529 272.293 110 149.761 199.682 299.522 120 163.375 217.835 326.752 130 176.990 235.988 353.981 140 190.604 254.141 381.210		40	54.459	72.611	108.917
50 70 95.303 127.070 190.605 80 108.917 145.223 217.834 90 122.532 163.376 245.064 100 136.147 181.529 272.293 110 149.761 199.682 299.522 120 163.375 217.835 326.752 130 176.990 235.988 353.981 140 190.604 254.141 381.210		50	68.073	90.764	136.147
50 80 108.917 145.223 217.834 90 122.532 163.376 245.064 100 136.147 181.529 272.293 110 149.761 199.682 299.522 120 163.375 217.835 326.752 130 176.990 235.988 353.981 140 190.604 254.141 381.210		60	81.688	108.917	163.376
90 122.532 163.376 245.064 100 136.147 181.529 272.293 110 149.761 199.682 299.522 120 163.375 217.835 326.752 130 176.990 235.988 353.981 140 190.604 254.141 381.210		70	95.303		190.605
100 136.147 181.529 272.293 110 149.761 199.682 299.522 120 163.375 217.835 326.752 130 176.990 235.988 353.981 140 190.604 254.141 381.210	50	80	108.917	145.223	217.834
110 149.761 199.682 299.522 120 163.375 217.835 326.752 130 176.990 235.988 353.981 140 190.604 254.141 381.210		90	122.532	163.376	245.064
120 163.375 217.835 326.752 130 176.990 235.988 353.981 140 190.604 254.141 381.210		100	136.147	181.529	272.293
130 176.990 235.988 353.981 140 190.604 254.141 381.210		110	149.761	199.682	299.522
140 190.604 254.141 381.210		120	163.375	217.835	326.752
		130	176.990	235.988	353.981
150 204.219 272.294 408.440		140	190.604	254.141	381.210
		150	204.219	272.294	408.440

Здесь следует отметить, что в платформенных условиях мы имеем дело с фоновой трещиноватостью, на которую лишь на отдельных тектонически напряженных участках

налагается собственно тектоническая трещиноватость, связанная с пликативными или дизьюнктивными дислокациями. В тектонически активных регионах возрастает собственно тектоническая трещиноватость, которая может быть соизмерима или даже большей, чем плотность фоновых трещин. Однако интенсивная тектоническая трещиноватость способствует и интенсивному гидрохимическому эпигенезу, приводящему к залечиванию открытых трещин минеральным веществом. Поэтому часть тектонических трещин обычно бывает залеченной, а открытыми остаются лишь трещины самых последних генераций, еще не успевшие залечиться.

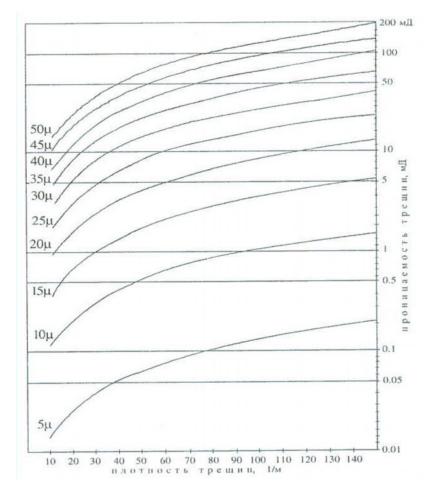


Рис. 2. График зависимости величины трещинной проницаемости от плотности трещин и их раскрытия (для двух систем взаимно перпендикулярных трещин или для хаотически ориентированных трещин)

На тех же принципах составлена палетка для определения трещинной пористости (рис. 3). Расчеты велись по формуле:

$$m_T = 0.1 \frac{\text{bl}}{\text{s}}$$
, %

Из графика видно, что величина трещинной пористости при плотности трещин $25 - 50^{-1}$ /м и раскрытости не более 100 микрон не превышает 0,2%, а величина в 1% достигается лишь в случае плотности трещин свыше 150^{-1} /м и раскрытии трещин в 100 мкм, что можно наблюдать лишь в исключительных условиях повышенной напряженности пород.

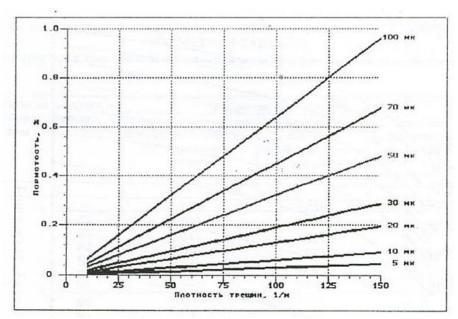


Рис. 3. График зависимости величины трещинной пористости от плотности трещин и их раскрытия

При определении трещинной проницаемости и трещинной пористости одним из основных параметров является плотность (густота) трещин. Если на густоту тектонических трещин, помимо механических свойств породы, влияют такие факторы, как интенсивность, направленность, длительность тектонических напряжений, которые обычно не поддаются прямым определениям, то густота общих (фоновых) трещин зависит от механических свойств пласта и его мощности, то есть факторов, поддающихся измерениям, а следовательно и прогнозу.

На основании полевых исследований в различных регионах бывшего СССР, и в частности, при изучении флишевых отложений Карпат, где наблюдается ритмичное чередование прослоев песчаника мощностью от 1 - 2 см до 1 м и более, было установлено, что чем меньше толщина слоя, тем больше густота общих трещин. Однако, начиная с толщин в 35 - 40 см это влияние становится менее ощутимым, а при больших толщинах вообще не отмечается (рис. 4). Аналогичная картина наблюдается и для других лито логических разностей пород, например, для верхнемеловых известняков Восточного Предкавказья [Смехов, 1974].

В средне-толстозернистых разностях пород (толщины свыше 40 см) на густоту общих трещин основное влияние оказывает литология, а в механическом отношении — хрупкость пород. На основании многолетних наблюдений в различных регионах бывшего СССР была составлена таблица числовой последовательности густоты фоновых трещин для различных по литологии пород (табл. 3) [Методические рекомендации..., 1989].

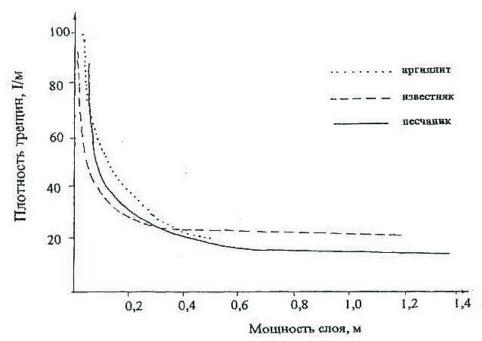


Рис. 4. Зависимость густоты трещин от толщины слоя

Таблица 3 Густота общих трещин в различных по литологии породах (за исключением тонкослоистых разностей)

Литология	Густота линий, 1/м
Кремнистые породы	35 – 40
Глинистые породы	30 – 40
Доломиты	20 – 35
Известняки	15 – 30
Песчаники	10 – 25
Конгломераты	5 – 20
Гипсы	5 – 15

Остановимся еще раз на раскрытость трещин. Существует представление, что раскрытость трещин на глубине может быть значительно большей, чем рассмотренный нами интервал в 5 – 50 мкм, вплоть до макротрещин с раскрытием в 0.5 мм и более, которые содержат в себе основные запасы УВ на ряде месторождений с трещинным типом коллектора. Основываясь на приведенной формуле определения трещинной проницаемости (1) и не останавливаясь на теоретической возможности нахождения таких трещин на

глубине, приведем некоторые расчеты. Обычно трещинные коллекторы связывают с известняками. Как говорилось выше, фоновая (не повышенная) трещиноватость в известняках составляет $15-30^{-1}$ /м.

Итак, если принять раскрытие трещин в 0,5 мм (500 мкм), то для различных ориентировок трещин получаем:

- 1. $K_T = A/Bb^3T = 0.0171/1570-500^3(15 \cdot 30) = 20422.0 \sim 40834$ мД (для хаотических трещин или при наличии двух систем взаимно перпендикулярных трещин).
- 2. Кт = $0.0228/1570-500^3(15 \cdot 30) = 27229.3 \sim 54458.6$ мД (для трех систем взаимно перпендикулярных систем трещин).
- 3. Кт = $0.03420/1570~500^3(15~30)$ $40843.95\sim81687.9$ мД (для горизонтальных трещин).

Если же раскрытие трещин принять равным 1 мм, то:

- 1. Кт = $0.0171/1570\ 1000^3(15\ 30) = 163375.8 \sim 326751.6$ мД для хаотических трещин или двух систем взаимно перпендикулярных трещин.
 - 2. Кт = $217834.4 \sim 435668.8$ мД для трех взаимно перпендикулярных систем трещин.
 - 3. Кт = $326751.6 \sim 653503.2$ мД для горизонтальных трещин.

Оставим читателю возможность определять, встречались ли на практике в трещинных коллекторах (отнюдь не повышенно трещиноватых, как в наших подсчетах) проницаемости в десятки и сотни дарси. Как приведено в работе В.Н. Майдебора [1967], проводившего сравнительный анализ иранских и грозненских нефтяных месторождений с трещинными коллекторами, в иранских (асмарийских) известняках, известных своей высокой продуктивностью, проницаемость по промысловым данным составляет 50 - 500 мД. В грозненских же позднемеловых известняках она намного меньше - единицы или десятки миллидарси. Для того, чтобы обеспечить подобную проницаемость, вовсе не требуются макротрещины. В асмарийских известняках существенную роль в проницаемости играют не только трещины, но и межпоровые каналы. В грозненских же известняках, где межзерновая проницаемость равна нулю и трещины играют основную роль в фильтрации флюидов, для получения вышеуказанной проницаемости, согласно приведенным данным в табл. 4, достаточно раскрытость в 25 мкм при фоновой плотности трещин, а при повышенной плотности трещин на тектонически напряженных участках в 50 - 80 1/м, наблюдаемая по промысловым данным проницаемость может быть достигнута при раскрытости трещин в 15 - 20 мкм.

На основании вышесказанного, во ВНИГРИ [Булач, Гмид, Белоновская, 1996] был предложен экспресс-метод оценки фоновой (общей) трещиноватости и коллекторского потенциала, позволяющий интерполировать поверхностные наблюдения на глубину. Последовательность определений следующая:

- 1. Для определения плотности трещин следует воспользоваться табл. 3. Если разрез сложен тонко-среднеслоистыми разностями (толщина менее 35 40 см), показания табл. 3 следует откорректировать по графику на рис. 4.
- 2. Для определения трещинной проницаемости воспользоваться табл. 2 или палеткой на рис 2. При этом надо знать плотность трещин (определенную в п. 1) и раскрытие трещин. Последний параметр, как говорилось выше, на глубине обычно колеблется в пределах 10 20 мкм.
- 3. Для определения трещинной пористости воспользоваться палеткой на рис. 3, где показана зависимость трещинной пористости от плотности трещин при их различных раскрытостях.

С помощью предложенного метода можно дать предварительную оценку фоновой трещиноватости, ее фильтрационных и емкостных возможностей для интересующей части разреза, зная лишь ее литологию и текстуру. Однако следует еще раз подчеркнуть, что в тектонически напряженных участках (пликативные и дизьюнктивные дислокации) определенные по предлагаемым палеткам величины будут занижены, ибо на общие (фоновые) трещины будут налагаться собственно тектонические трещины, при этом суммарная плотность трещин может значительно возрастать. Как показали наши исследования трещиноватости в зонах дизьюнктивных нарушений, проводившиеся как в обнажениях (Карпаты, Копет-Даг), так и по керну (Тимано-Печорская провинция, Вуктыльское месторождение), в узкой зоне порядка нескольких десятков метров густота открытых трещин возрастает в 1.5 - 2 раза [Белоновская, Дорофеева, 1982]. Повышение густоты трещин по сравнению с фоновыми значениями может наблюдаться и в зонах разуплотнения различного генезиса.

В итоге следует сказать, что на современном этапе, несмотря на наметившиеся новые направления исследований сложных коллекторов, (геофизические, гидродинамические, математические и др.) здесь не рассматриваемые, их прогноз в своей основе продолжает базироваться на прямых методах исследования. В этой связи следует подчеркнуть необходимость дифференцированного подхода к изучению структуры пустотного пространства и процессов, ее формирующих, что предусматривает проведение детальных

литологических исследований с широким применением современной оптической техники Исследование и прогноз сложных коллекторов возможно осуществлять лишь при соблюдении принципа комплексности. При этом, наряду с геологическими и литологическими методами, необходимо привлекать промысловые, промысловогеофизические и гидродинамические методы, лабораторные методы по исследованию петрофизических свойств и насыщенности пород.

Литература

Багринцева К.И. Условия формирования и свойства карбонатных коллекторов нефти и газа. М.: РГГУ, 1999, 285 с.

Белонин М.Д., Белоновская Л.Г., Булач М.Х., Гмид Л.П., Шиманский В.В. Карбонатные породы-коллекторы фанерозоя нефтегазоносных бассейнов России и ее сопредельных территорий. В 2-ух кн. СПб.: Недра, 2005, 260 с.

Белоновская Л.Г., Дорофеева Т.В. Зоны дизъюнктивных нарушений, как возможные коллекторы нефти и газа // Нетрадиционные источники УВ. Л.: ВНИГРИ, 1982. С. 59 - 71.

Булач М.Х., Гмид Л.П., Белоновская Л.Г. Карбонатные породы-коллекторы фанерозоя нефтегазоносных бассейнов России и ее сопредельных территорий. СПб.: ВНИГРИ, 1996, $187 \, \mathrm{c}$.

Майдебор В.Н. Схема строения трещинной среды // Тр. СевКав НИИ, вып. III, М.: Недра, 1967.

Методические рекомендации по изучению и прогнозу коллекторов нефти и газа сложного типа. Л.: ВНИГРИ, 1989, 102 с.

Ромм Е.С. Фильтрационные свойства трещиноватых горных пород. М.: Недра, 1966.

Смехов Е.М. Теоретические и методические основы поисков трещинных коллекторов нефти и газа. Л.: Недра, 1974, 200 с.

Рецензент: Поспелов Владимир Владимирович, доктор геолого-минералогических наук, профессор.