DOI: https://doi.org/10.17353/2070-5379/27_2015

УДК 550.42:552.578.061.32(571.56)

Иванова И.А.

Федеральное государственное унитарное предприятие «Сибирский научноисследовательский институт геологии, геофизики и минерального сырья» (ФГУП «СНИИГГиМС»), Новосибирск, Россия, Ivanova_Inna@sniiggims.ru

ГЕОХИМИЯ ОРГАНИЧЕСКОГО ВЕЩЕСТВА ОТЛОЖЕНИЙ БЕРЕЗОВСКОЙ ВПАДИНЫ (СИБИРСКАЯ ПЛАТФОРМА)

Приводятся результаты исследования геохимии неопротерозойских и нижнекембрийских отложений Березовской впадины. Глинистая пачка сералахской свиты характеризуется высокими содержаниями углерода. Установлены многочисленные проявления нафтидов, тяготеющие к отложениям сералахской свиты (нижний венд).

Ключевые слова: геохимия нафтидов, неопротерозой, нефтематеринские породы, Предпатомская нефтегазоносная область, Березовская впадина.

Введение

Положительная оценка перспектив нефтегазоносности Березовской впадины (БВ) впервые была дана Ф.Г. Гурари (1948). Бурением с 1950 г. установлены признаки региональной нефтегазоносности отложений рифея, венда, кембрия. При бурении глубоких скважин почти на всех площадях установлены проявления нафтидов различного масштаба в отложениях рифея-венда. Но месторождений нефти и газа открыто тогда не было. Позже проблема нефтегазоносности изучалась Д.К. Горнштейном, А.К. Бобровым [Горнштейн, 1965, Бобров, 1964; Бобров и др., 1974], И.Е. Москвитиным [Москвитин, Ситников, Токин, 1982; Москвитин, 1984] и др.

Бысахтахская приразломная структура, выявленная в результате поисковых работ семидесятых годов, была введена в глубокое бурение в восьмидесятые годы. И уже первая поисковая скважина подтвердила промышленную газоносность отложений венда и нижнего кембрия на Бысахтахской площади. Благодаря открытию Бысахтахского газоконденсатного месторождения (1986 г.) весь Березовский район рассматривается как потенциально нефтегазоносный. Помимо этого, на Кэдэргинской площади в отложениях ичерской свиты кембрия выявлена непромышленная залежь газа, на Усть-Бирюкской площади установлено нефтенасыщение в отложениях сералахской свиты.

Однако степень изученности территории сейсморазведочными и буровыми работами весьма низкая. Плотность бурения менее одной глубокой скважины на 1 тыс. км². месторождении. Большинство скважин расположены на Бысахтахском Основные нефтегазоносности рифей-вендскими перспективы впадины связаны с И венднижнекембрийскими отложениями. Как нефтематеринские на территории БВ рассматриваются отложения сералахской свиты [Москвитин, 1984].

Вопрос размещения возможных источников углеводородов (УВ), их стратиграфического положения, положения очагов нефтегазообразования в плане является дискуссионным.

Очевидно, что прояснение этих вопросов возможно при дальнейшем наращивании геолого-геохимических данных по рифейским и вендским отложениям региона, привлечении новых аналитических материалов. Это является целью настоящей работы.

Материалы и методика исследования

Исследование проведено по результатам битуминологических анализов 80-90-х гг., выполненных в СНИИГГиМСе, также были привлечены опубликованные результаты пиролитических анализов ВНИГНИ. Выполнены массовые анализы: содержаний органического углерода (Сорг) (430), хлороформного битумоида (275), элементного состава битумоидов (30); группового состава битумоидов, газожидкостной хроматографии (9), хромато-масс-спектрометрии (1). Важной частью исследования послужили результаты оценки уровня катагенетического преобразования рассеянного органического вещества (РОВ), выполненные посредством пиролитических методов (5, [Дахнова, Жеглова, Можегова, 2014]), определений элементного состава керогена (6) и показателя термической устойчивости (ПТУ) (35). Методики анализов керогена и ПТУ рассмотрены в работах А.Э. Конторовича, Л.И. Богородской [Конторович, 1976; Богородская, Конторович, Ларичев, 2005].

Показатель термической устойчивости характеризует степень катагенетической преобразованности по доле остаточного углерода в ОВ после обработки последнего в течение часа в изотермических условиях (300 °C) в токе азота. Он может быть определен в концентратах нерастворимого ОВ, так и в декарбонатизированных остатках породы. Весовым способом определяют органический углерод в исходных пробах (Сисх) и термообработанных (Сост). Расчет ПТУ:

$\Pi TY = C_{oct} * K / (C_{ucx} * 100),$

где К - «выход» нерастворимого остатка после термической обработки (%), равный P₂*100/P1, где P1 и P2 – масса нерастворимого остатка до и после термической обработки соответственно (г). Величину ПТУ выражают в долях от общего углерода, принятого за единицу (табл. 1).

Образцы были отобраны из четырнадцати скважин, пробуренных в Березовской впадине и прилегающих зонах в краевой части Предпатомского прогиба. Схема расположения изученных объектов исследования представлена на рис. 1.

Для построения карт распространения и изменений мощности отложений сералахской свиты использовались каротажные данные.

Таблица 1

(средние значения на	начало градаций ка	атагенеза) [Богородская, Конторови	ч, Ларичев, 2005]	
Катаген	e3	Максимальная глубина	ΠΤΥ	
Подстадия Этап*		погружения осадков	111 5	
	Терригенные	породы кембрия и венда		
	MK_1	1000-2100	0,28	
	MK ₂	2100-3400	0,34	
МК	MK ₃	3400-4500	0,5	
	MK4	4500-5400	0,64	
	MK5	5400-6000	0,74	
АК		> 6000	0,82-0,88	
	Карбонатные	породы кембрия и венда		
	MK ₁	1800-2600	0,38	
MIC	MK ₂	2600-3500	0,4	
МК	MK ₃	3500-4500	0,54	
	MK4	4500-5400	-	
	Карбона	тные породы рифея		
	MK_1	1000-2100	-	
	МК2	2100-3400	0,4	
МК	MK ₃	3400-4500	0,54	
	МК4	4500-5400	0,65	
	MK5	5400-6000	0,75	
АК		> 6000	0.82-0.9	

Показатель термической устойчивости керогена рассеянного органического вещества осадочных пород кембрия, венда и рифея Сибирской платформы (средние значения на начало градаций катагенеза) [Богородская, Конторович, Паричев, 2005]

* по Н.Б. Вассоевичу.

Геологическая характеристика района исследований

Рассмотрены типовые разрезы отложений верхнего рифея, венда и нижнего кембрия БВ, площадью около 50 тыс. км², расположенной на юго-востоке Лено-Тунгусской нефтегазоносной провинции (см. рис. 1). Исследуемая территория со своей фациальной спецификой разреза рифейских и вендских отложений по структурно-фациальному районированию Сибирской платформы относится к Березовскому структурно-фациальному району и Березовской структурно-фациальной зоне, представляет собой северо-восточную окраину Байкало-Патомского осадочного бассейна [Стратиграфия нефтегазоносных бассейнов..., 2005].

3

а - тектонические структуры: 1 - положительные, отрицательные: 2 - прогибы, 3 - впадины, 4 - промежуточные; границы структур: 5 надпорядковых, 6 - первого порядка; 7 - месторождения; 8 - контур участка работ. б - границы: 9 - Лено-Тунгусской нефтегазоносной провинции, 10 нефтегазоносных областей; 11 - Березовской впадины; 12 - Бысахтахское месторождение; 13 - глубокие скважины; 14 - скважины, по которым имеются битуминологические данные, 15 - административная граница. Границы Березовской впадины взяты из [Петров, Александров, Сивцев, 2012]. Данные анализа каротажа и керна глубоких скважин, пробуренных в пределах БВ, показывают следующую последовательность отложений (снизу вверх): верхнерифейские, представленные чекурдахской, алексеевской, торгинской свитами; вендские - сералахской, бюкской, успунской, кудулахской и юряхской свитами, и кембрийские (рис. 2). Мощность осадочного чехла впадины на приплатформенном борту составляет 1,2-1,6 км, на прискладчатом – до 5 и более километров.

Сералахская свита, стратиграфически относящаяся к непскому горизонту, представлена в нижней части преимущественно алеврито-песчаными отложениями, перекрываемыми однородной пачкой аргиллитов, являющейся объектом данного исследования. Аргиллиты темно-серого до черного цвета с включениями пирита являются маркирующим горизонтом. Пачка аргиллитов также хорошо выделяется на каротажной кривой по повышению радиоактивности в разрезе (рис. 3). Мощность пачки 10-40 м. Верхняя часть свиты сложена доломитами с прослоями песчаников. Мощность свиты увеличивается в западном направлении (см. рис. 3). Ось БВ смещена к западному и северо-западному бортам [Петров, Александров, Сивцев, 2012]. Также изменяется и литологический состав: с уменьшением мощности свиты песчаные толщи замещаются на доломиты. Исследуемые отложения распространены в пределах впадины, на соседних разрезах уже наблюдаем латеральные аналоги свиты (западнее: харыстанская, жербинская свиты; восточнее происходит выклинивание - в Алданском районе отложения тирского горизонта залегают на рифейских или фундаменте).

Характеристика рассеянного органического вещества докембрийских отложений

Содержания Сорг в отложениях БВ зависят от литологии, концентрации нерастворимого остатка, и составляют в среднем 0,89% (максимальные содержания Сорг до 3,75-4%). Повышенные значения фиксируются в глинистой пачке сералахской свиты. Выход хлороформного битумоида в отложениях сералахской свиты составляет 0,003-0,260%. Битумоидный коэффициент ОВ этих отложений - 3-26%. Элементный состав хлороформного битумоида варьирует в следующих пределах: С - 69-86%, Н - 8-14%, О + N + S - 1-15%. Разброс содержаний водорода объясняется встречающимися в образцах миграционными нафтидами. По анализу группового состава содержание асфальтенов невысокое (2-10%), концентрация смол составляет 67-80%.

По анализам керогена рассеянное ОВ глинистой пачки сералахской свиты, являющееся сапропелевым, претерпело катагенетические преобразования уровня МК₃-МК₄, а в районах воздействия складчато-надвиговых дислокаций со стороны Байкало-Патомской складчатой области [Мигурский, Старосельцев, 1989] - до МК₅. ОВ еще не утратило свой генерационный потенциал, хотя он, конечно, невелик (газогенерационный).

ISSN 2070-5379 Neftegasovaâ geologiâ. Teoriâ i practika (RUS) URL: http://www.ngtp.ru

Рис. 2. Сводный литолого-стратиграфический разрез северо-востока Предпатомского прогиба (по данным ПГО «Ленанефтегазгеология», 1987)

6

ISSN 2070-5379 Neftegasovaâ geologiâ. Teoriâ i practika (RUS) URL: http://www.ngtp.ru

Рис. 3. Корреляция отложений сералахской свиты по скважинам Березовской впадины (разбивки взяты из [Граусман, Жерновский, Мейен, 1986] с изменениями)

1 - граница сералахской свиты, 2 - пачка аргиллитов.

Повышенные концентрации водорода в керогене OB сералахской свиты, вероятно, объясняются тем, что из-за неполной дебитуминизации присутствуют примеси частично растворимых миграционных нафтидов. Атомное соотношение H/C меньше единицы, соотношение O/C низкое, менее 0,1. Также показателем качества керогена, или типа OB, являются водородный (HI = $S_2/100$ Copr) и кислородный (OI = $S_3/100$ Copr) индексы. По пиролитическим анализам OB сералахской свиты имеет низкий водородный индекс: HI = 115-170. Вендское OB по элементному составу соответствует второму типу, никакой примеси в OB высшей растительности не должно быть. Кислородный индекс изменяется в пределах 1-20. Компонент S₂, также идентифицируется при пиролизе и отражает количество VB, которые могут образоваться при полной реализации нефтематеринского потенциала, содержащегося в породе OB. Данный показатель составляет: S₂ = 1-5 мг VB/г породы, а учитывая S_{1 ср} = 0,54 мг VB/г породы. Ттах в исследуемых отложениях варьирует в пределах 450-460°, что отвечает степени катагенеза – MK₃, и подтверждается элементными анализами керогена.

По определениям показателей термической устойчивости (35) средняя величина ПТУ равна 0,6 (что соответствует термодинамическим условиям МК₃₋₄) как для рифейских, так для вендских отложений (табл. 2) (методика анализа изложена в [Богородская, Конторович, Ларичев, 2005]). Такое соотношение не дает право говорить о катагенетическом несогласии между рифейскими и вендскими отложениями, как это в других районах Сибирской платформы [Баженова, Дахнова, Можегова, 2011]. Подобная картина и в определении элементного состава керогена в рифейских и вендских отложениях: С – 83%, H – 5%.

Установлены многочисленные проявления нафтидов, тяготеющие к отложениям сералахской свиты, а также к подстилающим и перекрывающим отложениям (табл. 3).

По результатам газожидкостной хроматографии (рис. 4) битумоиды ОВ сералахской свиты в распределении УВ характеризуются максимумами в низкомолекулярной области на н-C15-17 (высокая концентрация короткоцепочечных н-алканов свидетельствует о том, что исследуемый нафтид не подвергался биодеградации). Также на хроматограммах видно преобладание нечетных гомологов (коэффициент нечетности по всему ряду равен 1,07-1,19). Самыми распространенными алифатическими изопреноидами являются пристан $C_{19}H_{40}$ (2, 6, 10, 14-тетраметил-пентадекан) и фитан $C_{20}H_{42}$ (2, 6, 10, 14-тетраметил-гексадекан). Значение отношения пристан/фитан около 1 — наблюдается обычное преобладание н-алканов над изопреноидами, в частности, преобладание н-гептадекана и н-октадекана над пристаном и фитаном (отношение пристан/С17 и фитан/С18 соответственно 0,11 и 0,44).

Номер п/п	Номер рег.	Площадь, скв.	Интервал отбора	Возраст	Свита	Порода	H.O., %	Сорг ^{н.о.} , %	С _{орг} , % на породу	Бхл, %	β, %	С _{орг} ^{н.о.} вес.метод, %	ПТУ
1	10323	Усть-Бирюкская, 1	999	ε_1	чарская	доломит глинистый	12,42	1,36	0,17	0,039	22,9	1,27	0,52
2	10324	Усть-Бирюкская, 1	1001	ε_1	чарская	доломит	4,0	3,3	0,13	0,0189	14,5	2,24	0,54
3	10329	Усть-Бирюкская, 1	1303.4-1310.4	\mathbb{E}_1	толбочанская	доломит глин-тый	24,4	0,6	0,15	0,0084	5,6	0,60	0,55
4	10334	Усть-Бирюкская, 1	1409,5	ε_1	толбочанская	доломит	4,0	1,9	0,07			1,85	0,39
5	10338	Усть-Бирюкская, 1	1501	ε_1	толбочанская	доломит известк.	9,0	0,95	0,08	0,0069		0,81	0,54
6	10341	Усть-Бирюкская, 1	2027,5	ε_1	билирская	доломит	11,4	0,69	0,08			0,63	0,57
7	10352	Усть-Бирюкская, 1	2083	ε_1	билирская	доломит	9,07	1,22	0,11			1,38	0,46
8	784	Эргеджейская, 2360	3021	\mathbb{E}_1	билирская	доломит глин-тый	4,83	3,38	0,16	0,0039	2,4	3,10	0,77
9	788	Эргеджейская, 2360	3066,2	\mathbb{E}_1	билирская	доломит глин-тый	58,48	0,32	0,19	0,0015	0,8	0,21	0,71
10	834	Верхнечерендейская, 2170	2928,2	ε_1	билирская	доломит	20,35	0,79	0,16	0,0155	9,7	0,53	0,86
11	829	Верхнечерендейская, 2170	2484,8	ε_1	нелбинская	доломит глин-тый	29,4	0,47	0,14			0,10	0,80
12	2450	Бордонская, 2400	1462,5	ε_1	юрегинская	ангидрит	58,6	0,29	0,17	0,0069	4,1	0,25	0,18
13	10365	Усть-Бирюкская, 1	2145	V_2 - C_1	юряхская	доломит	20,34	0,72	0,14	0,0086		0,41	0,55
14	842	Верхнечерендейская, 2170	2994	V_2 - C_1	юряхская	доломит	34,97	0,75	0,26	0,0076	2,9	0,31	0,68
15	848	Верхнечерендейская, 2170	3002	V_2 - ε_1	юряхская	мергель, доломит	62,23	0,37	0,23	0,0104	4,5	0,42	0,69
16	799	Эргеджейская, 2360	3106,6	V_2 - C_1	юряхская	доломит глин-тый	60,27	0,23	0,14	0,0032	2,3	0,16	0,44
17	850	Верхнечерендейская, 2170	3098	V_2	кудулахская	мергель, доломит	35,23	0,77	0,27	0,0201	7,4	0,13	0,77
18	2454	Бордонская, 2400	2471	V_2	успунская	доломит ангидритистый	27,85	1,08	0,3			0,54	0,30
19	10371	Усть-Бирюкская, 1	2536	V_2	бюкская	доломит	2,26	3,22	0,07	0,011		разб. 0.62	0,53
20	10382	Усть-Бирюкская, 1	2683	V_2	бюкская	аргиллит	54,7	0,29	0,16	0,0077		0,32	0,62
21	10384	Усть-Бирюкская, 1	2722,5	V_2	бюкская	ангидрито-доломит	5,65	2,3	0,13			разб. 0.68	0,50
22	10386	Усть-Бирюкская, 1	2751,5	V_2	бюкская	аргиллит	84,5	0,31	0,26			0,38	0,50
23	10387	Усть-Бирюкская, 1	2759,5	V ₂	бюкская	аргиллит	77,1	0,37	0,28			0,50	0,44
24	808	Эргеджейская, 2360	3276	V ₂	кудулахская	доломит глин-тый	35,07	0,74	0,26	0,0089	3,4	0,42	0,76
25	815	Эргеджейская, 2360	3769	V ₂	бюкская	доломит глин-тый	54,43	0,45	0,24			0,24	0,79
26	2455	Бордонская, 2400	2474	V ₂	успунская	доломит	18,37	1,44	0,26			0,47	0,32
27	2462	Бордонская, 2400	2803,5	V ₂	бюкская	доломит	4,5	6,02	0,27			3,78	0,87
28	2468	Бордонская, 2400	3229	V_1	сералахская	аргиллит	66,5	0,66	0,44	0,0321	7,3	0,33	0,88
29	336M	Эргеджейская, 2360	3978,5-3980	V_1	сералахская	аргиллит	89,5	1,86	1,67	0,084	5,0	2,32	0,76
30	10393	Усть-Бирюкская, 1	3218,5	Rf	алексеевская	доломит	2,07	3,3	0,07			разб. 0.65	0,52
31	10396	Усть-Бирюкская, 1	3412	Rf	алексеевская	известняк	2,67	2,34	0,06	0,006		1,90	0,59
32	10399	Усть-Бирюкская, 1	3489,5	Rf	алексеевская	доломит	3,66	3,52	0,13			3,29	0,54
33	10401	Усть-Бирюкская, 1	3555	Rf	чекурдахская	доломит	10,6	0,79	0,08	0,008		0,79	0,66
Ит	сого:	4 площади	999-3980	$Rf-C_1$		среднее значение:		1,4	0,2	0,02	6,6	1	0,59

Результаты определения показателя термической устойчивости органического вещества пород

Таблица 2

Таблица 3

Возраст Площадь	Рифей	Нижний венд (сералахская)	Верхний венд*	Кембрий нижний, средний			
Молбинская			•				
Бордонская			+				
Усть-Бирюкская	+	+•	+				
Кэдэргинская		+	+	0			
Верхнечерендейская		+	•	• 0			
Эргеджейская		+	+	• +			
Верх-Джеге	+•						
Бысахтахская	• 0	0	+ ⊕ 0				
Олекминская	+	+ 0					
Ыстынахская		+ 0		0			
Мухтинская				0			
*бюкская, успунская, кудулахская свиты							

Нафтидопроявления в осадочном чехле Березовской впадины

Фиксируется присутствие 12, 13-монометилалканов. 12- и 13-монометилалканы ранее были установлены в битумоидах пород, синхронных сералахской свите. Такие соединения фиксировались в битумоиде из темноцветных аргиллитов тирбесской свиты Предпатомского прогиба [Соболев, Кожевых, 2013]. Также отмечалось присутствие повышенных количеств 12- и 13-монометилалканов в битумоидах бюкской свиты венда [Дахнова и др., 2010]. Полициклические нафтены и, прежде всего, стераны и тритерпаны являются важнейшими хемофоссилиями. В составе полициклических нафтенов битумоидов сералахской свиты преобладают тритерпаны с повышенным содержанием пентациклических УВ.

ISSN 2070-5379 Neftegasovaâ geologiâ. Teoriâ i practika (RUS) URL: http://www.ngtp.ru

Рис. 4. Типичные хроматограммы насыщенных фракций хлороформенных экстрактов из пачки аргиллитов сералахской свиты

Справа хроматограммы из опубликованного источника [Дахнова и др., 2014].

Выводы

Повышенные содержания органического вещества фиксируются в глинистой пачке сералахской свиты.

Катагенетическое преобразование органического вещества этой глинистой пачки отвечает градациям катагенеза МК₂-МК₅.

Установлены многочисленные проявления нафтидов, тяготеющие к отложениям сералахской свиты, а также к подстилающим и перекрывающим отложениям.

Аналогичные глинистые пачки на уровне непского горизонта встречаем в смежных с БВ областях.

Литература

Баженова Т.К., Дахнова М.В., Можегова С.В. Верхний протерозой Сибирской платформы – основной источник нефтегазоносности её домезозойского мегабассейна // Нефтегазовая геология. Теория и практика. – 2011. - Т.6. - №2. - http://www.ngtp.ru/rub/1/17_2011.pdf

Бобров А.К. Геология Предбайкальского краевого прогиба. // Строение и перспективы нефтегазоносности. - М.: Наука, 1964. - 227с.

Бобров А.К., Воздвиженский И.А., Москвитин И.Е., Ушаков А.И. Геологическое строение и нефтегазоносность северо-восточной части Предбайкальского краевого прогиба. - М.: Недра, 1974. - С. 332.

Богородская Л.И., Конторович А.Э., Ларичев А.И. Кероген: Методы изучения, геохимическая интерпретация. - Новосибирск: Изд-во СО РАН, филиал «Гео», 2005. - 254 с.

Горнштейн Д.К. Тектоническое строение и перспективы нефтегазоносности Алданской антеклизы. - М.: Наука, 1965. - 120 с.

Граусман В.В., Жерновский В.П., Мейен С.В. Изучение разрезов глубоких скважин, расчленение и корреляция их с целью обеспечения стратиграфической основой нефтегазопоисковых работ в ЯАССР // Фонды ПГО «Ленанефтегазгеология». – Якутск: ЛНГГ, 1986. – 239 с.

Дахнова М.В., Жеглова Т.П., Можегова С.В. Генерационные характеристики ОВ и распределение биомаркеров в битумоидах нефтематеринских пород рифея, венда и кембрия Сибирской платформы // Геология и геофизика. - 2014. – Т.55. - №5-6. – С. 953-962.

Дахнова М.В., Жеглова Т.П., Можегова С.В., Мялкина Ю.А., Назарова Е.С., Нечитайло Г.Е. Роль рифейских и вендских нефтематеринских толщ как поставщиков углеводородов в зоны нефтенакопления на юге Сибирской платформы // Успехи органической геохимии: сб. матер. Всерос. науч. конф. ИНГГ им. А.А. Трофимука (г. Новосибирск, 11-15 октября 2010 г.). – Новосибирск: ИНГГ, 2010. - С. 129-132.

Конторович А.Э. Геохимические методы количественного прогноза нефтегазоносности. - М.: Недра, 1976. - 249 с.

Мигурский А.В., Старосельцев В.С. Шарьяжное строение зоны сочленения Сибирской платформы с Байкало-Патомским нагорьем // Советская геология. - 1989. - № 7. - С. 9-15.

Москвитин И.Е. Геологические предпосылки перспектив нефтегазоносности верхнепротерозойских отложений Березовского прогиба: дис. ... канд. геол.-мин. наук: 04.00.17 / Москвитин Иван Егорович. - Новосибирск, 1984. - 209 с. *Москвитин И.Е., Ситников В.С., Токин В.В.* О перспективах нефтегазоносности Березовского прогиба // Нефтегазоносные отложения Западной Якутии: сб. науч. тр. - Якутск: ЯФ СО АН СССР, 1982. - С. 40-54.

Петров М.М., Александров А.Р., Сивцев А.И. Надвиговые дислокации в Березовской впадине // Нефтегазовое дело. – 2012. - № 4. - С. 502-514.

Соболев П.Н., Кожевых И.А. Новые данные по геохимии нафтидов и органического вещества неопротерозойских отложений зоны сочленения Предпатомского прогиба и Непско-Ботуобинской антеклизы (Сибирская платформа) // Геология и минерально-сырьевые ресурсы Сибири. - 2013. - №2. - С. 77-85.

Стратиграфия нефтегазоносных бассейнов Сибири. Рифей и венд Сибирской платформы и ее складчатого обрамления / Н.В. Мельников, М.С. Якшин, Б.Б. Шишкин. – Новосибирск: «Гео», 2005. – 428 с.

Ivanova I.A.

Siberian Research Institute of Geology and Mineral Resources (SNIIGGiMS), Novosibirsk, Russia, Ivanova_Inna@sniiggims.ru

GEOCHEMISTRY OF ORGANIC MATTER FROM DEPOSITS OF BEREZA DEPRESSION (SIBERIAN PLATFORM)

The results of the study of geochemistry of the Neoproterozoic and Lower Cambrian sediments of Bereza depression are provided. The clay layer of Seralahskaya suite is characterized by high carbon content. Numerous manifestations of naphthides associated with deposits of Seralahskaya suite (Lower Vendian) are identified.

Keywords: geochemistry of naphthides, Neoproterozoic period, oil source rocks, Pre-Patom oil and gas region, Bereza depression.

References

Bazhenova T.K., Dakhnova M.V., Mozhegova S.V. Verkhniy proterozoy Sibirskoy platformy – osnovnoy istochnik neftegazonosnosti ee domezozoyskogo megabasseyna [Upper Proterozoic of Siberian platform - the main source of oil and gas potential of its pre-Mesozoic megabasin]. Neftegazovaya geologiya. Teoriya i praktika, 2011, vol. 6, no. 2, available at: http://www.ngtp.ru/rub/1/17_2011.pdf

Bobrov A.K. *Geologiya Predbaykal'skogo kraevogo progiba* [The geology of Pre-Baikal marginal trough]. Stroenie i perspektivy neftegazonosnosti. Moscow: Nauka, 1964, 227p.

Bobrov A.K., Vozdvizhenskiy I.A., Moskvitin I.E., Ushakov A.I. *Geologicheskoe stroenie i neftegazonosnost' severo-vostochnoy chasti Predbaykal'skogo kraevogo progiba* [Geology and petroleum potential of the North-eastern part of Pre-Baikal marginal trough]. Moscow: Nedra, 1974, p. 332.

Bogorodskaya L.I., Kontorovich A.E., Larichev A.I. *Kerogen: Metody izucheniya, geokhimicheskaya interpretatsiya* [Kerogen: Methods of study, geochemical interpretation]. Novosibirsk: Izd-vo SO RAN, filial «Geo», 2005, 254 p.

Dakhnova M.V., Zheglova T.P., Mozhegova S.V. *Generatsionnye kharakteristiki OV i raspredelenie biomarkerov v bitumoidakh neftematerinskikh porod rifeya, venda i kembriya Sibirskoy platformy* [Generational characteristics of organic matter and distribution of biomarkers in bitumens of source rock of the Riphean, Vendian and Cambrian of the Siberian Platform]. Geologiya i geofizika, 2014, vol. 55, no. 5-6, p 953-962.

Dakhnova M.V., Zheglova T.P., Mozhegova S.V., Myalkina Yu.A., Nazarova E.S., Nechitaylo G.E. *Rol' rifeyskikh i vendskikh neftematerinskikh tolshch kak postavshchikov uglevodorodov v zony neftenakopleniya na yuge Sibirskoy platformy* [The role of the Riphean and Vendian oil source strata as the suppliers of hydrocarbons to the areas of oil accumulation in the south of the Siberian platform]. Uspekhi organicheskoy geokhimii: proceedings of All-Russia scientific conference in Trofimuk INGG (Novosibirsk, 11-15 October 2010). Novosibirsk: INGG, 2010, p. 129-132.

Gornshteyn D.K. *Tektonicheskoe stroenie i perspektivy neftegazonosnosti Aldanskoy anteklizy* [Tectonic structure and petroleum potential of the Aldan anteclise]. Moscow: Nauka, 1965, 120 p.

Grausman V.V., Zhernovskiy V.P., Meyen S.V. *Izuchenie razrezov glubokikh skvazhin, raschlenenie i korrelyatsiya ikh s tsel'yu obespecheniya stratigraficheskoy osnovoy neftegazopoiskovykh rabot v YaASSR* [Studying of deep wells references, division and correlation of them with a view to ensuring the stratigraphic basic of oil and gas exploration in YASSR]. Funds of PGO «Lenaneftegazgeologiya». Yakutsk: LNGG, 1986, 239 p.

Kontorovich A.E. *Geokhimicheskie metody kolichestvennogo prognoza neftegazonosnosti* [Geochemical methods of quantitative forecasting of oil and gas potential]. Moscow: Nedra, 1976, 249 p.

© Нефтегазовая геология. Теория и практика. – 2015.- Т.10.- №3.- http://www.ngtp.ru/rub/1/27_2015.pdf

Migurskiy A.V., Starosel'tsev V.S. *Shar'yazhnoe stroenie zony sochleneniya Sibirskoy platformy s Baykalo-Patomskim nagor'em* [Structure of the zone of junction of the Siberian platform with the Baikal-Patom Highland]. Sovetskaya geologiya, 1989, vol 7, p. 9-15.

Moskvitin I.E. *Geologicheskie predposylki perspektiv neftegazonosnosti verkhneproterozoyskikh otlozheniy Berezovskogo progiba* [The geological pre-conditions of petroleum potential of Upper Proterozoic deposits of Bereza trough]. Novosibirsk, 1984, 209 p.

Moskvitin I.E., Sitnikov V.S., Tokin V.V. *O perspektivakh neftegazonosnosti Berezovskogo progiba* [On the prospects of oil and gas potential of Bereza trough]. Neftegazonosnye otlozheniya Zapadnoy Yakutii: sb. nauch. tr. - Yakutsk: YaF SO AN SSSR, 1982, p. 40-54.

Petrov M.M., Aleksandrov A.R., Sivtsev A.I. *Nadvigovye dislokatsii v Berezovskoy vpadine* [Overthrust dislocation in Bereza depression]. Neftegazovoe delo, 2012, no. 4, p. 502-514.

Sobolev P.N., Kozhevykh I.A. *Novye dannye po geokhimii naftidov i organicheskogo veshchestva neoproterozoyskikh otlozheniy zony sochleneniya Predpatomskogo progiba i Nepsko-Botuobinskoy anteklizy (Sibirskaya platforma)* [New data on the geochemistry of organic matter and naphthides of the Neoproterozoic sediments of junction zone of Pre-Patom deflection and Nepa Botuoba anteclise (Siberian platform)]. Geologiya i mineral'no-syr'evye resursy Sibiri, 2013, vol. 2, p. 77-85.

Stratigrafiya neftegazonosnykh basseynov Sibiri. Rifey i vend Sibirskoy platformy i ee skladchatogo obramleniya [Stratigraphy of Siberian oil and gas basins. Riphean and Vendian of the Siberian Platform and its folded frame]. N.V. Mel'nikov, M.S. Yakshin, B.B. Shishkin. Novosibirsk: «Geo», 2005, 428 p.

© Иванова И.А., 2015